abbreviate We can abbreviate the above system by using the concepts of the previous section.

accompany The extremely unfavorable eigenvalue structure always accompanies unconstrained problems derived in this way. The user manuals accompany commercial packages.

according to According to (1) the dual to the above problem is given by ... According to Lemmas 1 and 2, ... According to the analysis given in the paper [1] on his regularization technique, we will apply the regularization technique to the CP.

accumulation The sequence has at least one accumulation point.

accuracy For any accuracy $\epsilon > 0$ required for the total complementarity, ... If the solution to (26) is computed inaccurately, the new point is no longer feasible. It is efficient in terms of total function evaluations required to achieve a specified accuracy. One more iteration gives $x_+ = 1.7320508$, which has eight correct digits. Suppose we wish to calculate the square root of 3 to a reasonable number of places. The sequence attains an approximate optimal solution with a given accuracy in a finite number of iterations.

accurate As $c \to 0$ the approximation becomes increasingly accurate.

adapt We can easily modify the exterior point algorithm using the step length control rule so as to adapt it to the linear complementarity problem with an $n \times n$ positive semi-definite matrix M.

adaptively Alternatively, we can change the parameters adaptively during the execution of the algorithm.

address In the next few sections we address the problem of efficiently solving the unconstrained problems associated with a penalty or barrier method. The textbook is addressed to students of mathematical programming.

adjoin A unique solution results, however, if $n - m$ additional independent linear equations are adjoined.

adjust We adjust the values of the basic variables so as to preserve the constraints $Ax = b$.

admissible To find the largest admissible value of t, we have to know how precisely the values of the basic variables change with the changes of t.

admit In fact, we must readily admit that for any computer algorithm there exist nonlinear functions perverse enough to defeat the algorithm.

advances Another objective is to describe some of the advances in LP computational practice.
It is important then to develop optimality criteria that take advantage of the differentiability property. Its primary advantage is its minimal high speed storage requirements. The distinctive feature of the exterior point algorithm mentioned above is a main advantage over primal-dual interior point algorithms. The revised simplex procedure can result in considerable computational advantage.

The aforementioned advanced optimization techniques have received increasing attention over the last decade.

This agrees with our experience for finding the square root of 3 in the example began this section. This definition of angle agrees with the one in analytic geometry.

Alternatively, we can change the parameters adaptively during the execution of the algorithm. Each algorithm in the class converges globally. The modified algorithm works as their interior point algorithm applied to the primal-dual pair of the linear programs \(\mathcal{P}(\theta^q, \theta^r) \) and \(\mathcal{D}(\theta^q, \theta^r) \) starting from \((x^f, y^f, z^f)\). We can create algorithms that are globally convergent and are also quickly locally convergent on most functions. We continue running the modified algorithm beyond the \(s \)th iteration.

The matrix \(M \) is called a P-matrix if all its principal minors are positive.

They allow us to see those principles for constructing good local, global, and derivative-approximating algorithms. This generalization allow us to handle a somewhat wider class of problems later.

Alternate Proof.

Alternatively, we can change the parameters adaptively during the execution of the algorithm.

The barrier method is quite analogous to the penalty method.

A rigorous analysis of the details will be deferred to Chapter 3. According to the analysis given in the paper [1] on his regularization technique, we will apply the regularization technique to the CP. The potential function is a device to carry out the complexity analysis of his algorithm.

An initial feasible solution is not always apparent for other types of linear programs.

It appears that the work expended in calculating the elements in these columns after each pivot is, in some sense, wasted effort. This summary of a report which appeared under the same title, where an extensive study was carried out regarding a unified approach for interior point algorithms.

To ensure that the definition is applicable to any sequence, ...

Global optimization problems are widespread in the mathematical modeling of real world systems for a very broad range of applications.
apply Theorem 6.3.3 applies readily to any line-search algorithm.

approach Both approaches are derived initially of the unconstrained minimization problem. Section 6.3 discusses the first major global approach, modern versions of the traditional idea of backtracking along the Newton direction if a full Newton step is unsatisfactory. There are a number of different approaches to this important phase of minimization. There are approaches to duality which use the conjugate function concept. This characterization has a natural extension to the global approach where convexity ensures that the global minimum point. We generates a sequence \(\{ (x^k, y^k, z^k) \} \) to approach optimal solutions moving through not only the interior but also the exterior of the feasible region of the primal-dual pair of \(\mathcal{P} \) and \(\mathcal{D} \). We take another approach toward the development of methods lying somewhere intermediate to steepest descent and Newton’s method. We will call an algorithm that takes this approach quasi-Newton.

appropriate It is therefore appropriate to consider this class in greater detail and distinguish certain cases within it.

approximate The idea underlying quasi-Newton methods is to use an approximation to the inverse Hessian in place of the true inverse. The quasi-Newton methods build up an approximation to the inverse Hessian.

approximation As \(c \to 0 \) the approximation becomes increasingly accurate.

arbitrary Now let \(x \) be an arbitrary element of the set \(X \).

argue He argues that the zero vector is an approximate zero of the system of equations. We use this bound to argue that ...

argument The necessary optimality criteria need more sophisticated arguments that involve theorems of alternative. The proof is similar but needs some additional arguments to the proof given in Section 3 for the original algorithm.

arise In the special case arising from the projective scaling algorithm these method has asymptotically linear convergence. Many linear programs arising from practical situations involve variables that are subject to both lower and upper bounds. The areas of application in which the assignment problem arises are usually distinct from those of the more general transportation problem. The method serves as a primal-dual interior point algorithm if we focus our attention to LCPs arising from linear programs.

as As in all linear programming problems, degeneracy, corresponding to a basic variable having the value zero, can occur in the transportation problem.

as long as A second natural question is: ...? As long as the initial error \(\epsilon^0 \) is less than \(\delta \), the new error \(\epsilon^1 \) will be smaller than the old error \(\epsilon^0 \).

aspect In general, I have concentrated on aspects relevant to the bulk of current commercial practice.
assert If $P = \infty$, then we assert that the system (1) has no solution. These theorems assert the existence of solutions of two linear systems that have a certain positivity property.

assign Each worker must be assigned to exactly one job, and each job must have one assigned worker. In this method a zero-valued basic variable is assigned the value e and is then treated in the usual way.

assist The function assists in choosing the step lengths.

associate Such an extension is especially useful when we deal with the LCP associated with a bimatrix game. We associate to such a linear program the potential function $g(x) = \ldots$. With every $x \in W$ we associate the nonempty closed set \ldots

Assume Assume that (x, y, z) be a feasible solution of the primal-dual pair of $\mathcal{P}(\theta^k_p, \theta^k_d)$ and $\mathcal{D}(\theta^k_p, \theta^k_d)$.

assumption ... under the assumption that ... The above theorem can be strengthened by dropping the assumption that ... The algorithm does not rely on any nondegeneracy assumption on the LCP. The main sufficient optimality criteria developed here require no convexity assumptions on the minimization problem. We add assumptions that ... and that ... We make some smoothness assumptions on f' in order to estimate the error in the approximation.

assure The results of Chapter 2 assure us that it is sufficient to consider only basic feasible solutions in our search for an optimal feasible solution.

attain $f(x)$ does not attain its minimum at an interior point z. The sequence attains an approximate optimal solution with a given accuracy in a finite number of iterations.

attention The method serves as a primal-dual interior point algorithm if we focus our attention to LCPs arising from linear programs. The aforementioned advanced optimization techniques have received increasing attention over the last decade.

attribute The theorem in its present form is attributed to Uzawa [11] and Karlin [7].

available A basic feasible solution is sometimes immediately available for linear programs. A separate procedure is required to obtain feasibility, and a number of methods are available for doing this. For $\mu = 1$ we have an exact solution available. If the revised simplex method is used, then only x^*_B is readily available. Such a point is not always available. The concepts and approaches are equally applicable to other commercially available languages. The technical processing of books is the library’s effort to make the book and this material available to its public.

average Each entry in the table represents the average number of iterations over 100 problems.

avoid One method for avoiding slow convergence for these problems is to apply Newton’s method. We have thus, for example, avoided a lengthy discussion of duality and the dual-simplex method.
barrier In the case of barrier methods by adding a term that favors points interior to the feasible region over those near the boundary.

base In 1984 Karmarkar presented an algorithm based on finding a sequence of points in the interior of the polytope of feasible solutions of the linear program.

basis As t increases, the values of the basic variables change until a variable whose value is the first to drop to zero leaves the basis. Descent directions form the basis of some global methods for minimization. They are the basis of our algorithms for multivariable problems. This idea provides a theoretical basis for various methods.

become The above theorem becomes that of Abadie [1] if we replace the concavity of g at x by the requirement that g be linear. The last $(n - 1)$ equations now become ...

before The last inequality follows from (1), the equality before from (2), the equality before from (3), and the equality before from (4).

begin Our consideration of finding a root of one equation in one unknown begins with Newton’s method. We begin by establishing a fundamental theorem for ... We begin by giving a weak and easy-to-derive duality theorem. We begin our study of the solution of nonlinear problems by discussing problems in just one variable. We begin with the following slight generalization of Theorem 1, which establishes the nonexistence of a solution of ...

belief Until the mid 1960s the prevailing belief was that λ_k should be chosen to solve the one-dimensional minimization problem accurately.

benefits The basic idea forming a successful nonlinear algorithm is to combine a globally convergent strategy with a fast local strategy in a way that derives the benefits of both.

bring This book will bring together a comprehensive treatment of these techniques, thus filling an existing gap in the scientific literature.

call The nonnegative number $d(x, y)$ is called the distance between the two points x and y. The process of determining the minimum point on a given line is called line search.

candidate We examine the nonbasic variables as possible candidates for change so as to obtain an improved solution.

capability In general, the questions of existence and uniqueness are beyond the capabilities one can expect of algorithms that solve nonlinear problems.

care In applying the method, however, special care must be devoted to the manner by which the Hessian in inverted, since it is ill-conditioned.

carry out This summary of a report which appeared under the same title, where an extensive study was carried out regarding a unified approach for interior point algorithms. When we speak of a direction p, we assume that this normalization has been carried out.
The purpose of this note is to summarize a study which the authors have carried out in the paper [1].

Again, just as in the case of the saddlepoint necessary optimality criteria, there is no guarantee that $r > 0$ in Theorem 2 above. Both of the sets X and Y may be empty, in which case none of the above results hold. In cases where $r = 0$ it is intuitively obvious that ... In many cases, however, ... In order to exclude such cases, we have to introduce some regularity conditions. In the present case, ... In the special case arising from the projective scaling algorithm their method has asymptotically linear convergence. The method include as special cases many interior point algorithms. Theorem 2 can not be applied to degenerate cases where both problems P and D are feasible but P or D has no interior feasible solution. This is not always the case. We explore flexible choices of these two parameters which ensures the global convergence, in certain cases in polynomial time. We restrict ourselves to simple cases where the change of the parameters is governed by linear functions: We will describe the unified method in Section 2, and then derive in Section 3 a class of potential function reduction algorithms as special cases.

The class of copositive-plus matrices falls in this category.

Now, assuming nondegeneracy, small changes in the vector b will not cause the optimal basis to change.

We explore flexible choices of these two parameters which ensures the global convergence, in certain cases in polynomial time.

As t increases, the values of the basic variables change until a variable whose value is the first to drop to zero leaves the basis. Results obtained for convex functions can be changed into results for concave functions by appropriate multiplication by -1, and vice versa. Suppose a certain nonbasic variable x_i is selected for change in this way. The value of the nonbasic variable can be continuously changed until the nonbasic variable being changed reaches its opposite bound. We have to know how precisely the values of the basic variables change with the changes of t.

The global convergence characteristics of these methods are often satisfactory. The most important characteristic of a high-speed digital computer is its ability to perform repetitive operations efficiently.

He has a librarian in charge of the circulation of books.

The choice of $\eta = \sqrt{n}e$ gives an approximate solution for a large μ. The function f facilitates the choice of θ for the step length. We explore flexible choices of these two parameters which ensures the global convergence, in certain cases in polynomial time.

$\lambda \geq 0$ is chosen to give the first local minimum of $g(x)$ on the search ray $\{x + \lambda v : \lambda \}$ The application I have chosen is in oil-refinery investment and production planning. The scalar α is chosen to minimize the objective function f with the restriction that the point x^{k+1} and the line segment jointing x^k and x^{k+1} be feasible.
chose λ_k should be chosen to solve the one-dimensional minimization problem accurately.

circumstance Thus, the method of steepest descent should not be used as a computational algorithm in most of circumstances.

claim Incidentally, the other claim that ” . . . ” is incorrect. We claim that For if it did have a solution, then x would satisfy Hence ..., which contradicts the assumption that

clear For large c it is clear that ... It is also clear that $A = B$.

close A solution is very close in objective value to the optimum. How close is the affine approximation $g(x)$ to $f(x)$. We close this chapter by obtaining another fundamental theorem for a family of convex and linear functions.

coerce This is the second reason why we coerce H_c to be positive definite if it isn’t already.

combine The basic idea forming a successful nonlinear algorithm is to combine a globally convergent strategy with a fast local strategy in a way that derives the benefits of both. We combine a global method with Newton’s method into a hybrid algorithm. We combine now all the fundamental results of linear programming in the following theorem.

come The first term comes from the objective function of the quadratic programming problem above.

comment We comment below that ...

compactify Roughly speaking, the domain $[0, \infty]$ of the parameter t in (2) has been compactified into the domain $[0, 1]$ of the parameter θ in (3). We compactify the domain of the parameter t.

competitive The convergence rates of primal methods are competitive with those of other methods.

complexity We will establish the polynomial iteration complexity of a predictor-corrector infeasible-interior-point algorithm.

comprehensive Introduction to Global Optimization is a comprehensive textbook that covers the fundamentals in global optimization.

complicated Practically, it might be too complicated to compute such a small number.

computation The affine invariance of x^H is proved by a simple computation, see [1], Theorem 3.1. We learned from computational experience with the SDPA

computer All but trivial LP problems are solved with a computer.

concentrate In general, we have concentrated on aspects relevant to the bulk of current commercial practice. Instead we shall concentrate on a few of the more basic subjects which are simpler to prove and which subsume in an obvious way the duality results of linear programming.
Section 6.2 will reintroduce the concept of a descent direction that we saw briefly in the proof of Lemma 4.3.1. This section covers some of the basic graph and network terminology and concepts necessary for the development of this alternative approach.

Although our main concern is nonlinear problems, linear systems of the following type will be encountered very frequently: The inability to determine the existence or uniqueness of solutions is usually not the primary concern in practice. The theorems concerning the central trajectory correspond to theorems concerning the set of solutions of the system (1). We establish some basic results concerning the set of solutions of the minimization problem. Global optimization is concerned with the computation and characterization of global optima of nonlinear functions.

We conclude our study of one-dimensional problems by discussing minimization of a function of one variable. We conclude this section by mentioning the classical modified Newton’s method.

From (3) the conclusion of the theorem follows if we observe that ... The conclusion of Theorem 1 does not necessarily imply the infeasibility of the primal problem P nor the dual problem D. This leads to the conclusion that the gradient of the function vanishes.

The algorithm obeys the conditions. The criteria does not require any regularity conditions.

But the algorithm does not confine the iterates within the feasible region.

Karmarkar’s algorithm has a close connection with nonlinear optimization.

In considering iterative algorithms for finding either local or global minimum points, there are two distinct issues: global convergence properties and local convergence properties. Let us now consider in detail the proof of necessity in the previous theorem. The results of Chapter 2 assure us that it is sufficient to consider only basic feasible solutions in our search for an optimal feasible solution. We derive what may be considered extensions of theorems of the alternative to convex functions. We now return to consideration of general nonlinear programming problems.

It can be eliminated from consideration. Our consideration of finding a root of one equation in one unknown begins with Newton’s method. We know from practical considerations that the problem has a solution.

A preliminary step of the method consists of introducing so-called slack variables. We reformulate the set S in terms of the solution set of a system consisting of n piecewise C^1 equations and $n + 1$ variables.

In order to be consistent with ordinary matrix theory notation, we define the $m \times n$ matrix A as follows

Here α and β are constants but at least one of them is positive.

The set \mathcal{N} constitutes a narrow neighborhood of the central trajectory.
constitute The central trajectory constitutes a smooth curve which leads to a solution of the LCP.

contain Each chapter contains illustrative examples and ends with carefully selected exercises.

content The contents of this paper is as follows. We content ourselves here with the above weaker version.

context The central trajectory was originally studied in the context of linear programs.

continue At the same time the values of the m basic variables will change in such a way that the solution continues to satisfy the linear equations.

contradiction Since ... we arrive at a contradiction. We assume, on the contrary, that the algorithm never stops and derive a contradiction. We shall assume that $x = y$ and exhibit a contradiction. We will now show that if (1) holds, then a contradiction ensues.

contrary We assume, on the contrary, that the algorithm never stops and derive a contradiction.

convention In general we shall follow the convention of using upper case Latin letters to denote matrices.

converge Consider a sequence of real numbers $\{r^k\}$ converging to the limit r^*. Each algorithm in the class converges globally.

convergence In the last chapter, Newton’s method was shown to be locally q-quadratically convergent. The zero vector lies in the domain of quadratic convergence of Newton’s method. We can create algorithms that are globally convergent and are also quickly locally convergent on most functions. We introduce various concepts designed to measure speed of convergence. We can take any nonnegative valued function $\chi(n)$ of n for global linear convergence.

correspond A solution to the corresponding dual problem is $y^T = c^T B^{-1}$. As in all linear programming problems, degeneracy, corresponding to a basic variable having the value zero, can occur in the transportation problem. The theorems concerning the central trajectory correspond to theorems concerning the set of solutions of the system (1). This corresponds to the equations (2)', (3)' in the example in the preceding section. This corresponds to the most natural interpretation of (1) as a set of m equations. Lemma 1 corresponds to Theorem 3.

correspondence The correspondence $u \rightarrow u^+$ should be regarded as piecewise linear mapping.

cost Quasi-Newton methods offer the possibility of less numerical linear algebra computation per step, at the cost that more steps are needed to converge.
In the course of our analysis we develop two important generalizations of the method of steepest descent and its corresponding convergence rate theorem.

This section covers some of the basic graph and network terminology and concepts necessary for the development of this alternative approach.

The inequalities (1) and (2) serve as stopping criteria. We neglect the stopping criterion (10).

$M_c(x)$ crosses the x axis at the point x_+. During the past three decades, ...

Decide whether to stop or continue.

The corresponding basic variable is declared nonbasic.

One chooses a direction p from the current point x in which f decreases initially. The parameters are decreased to zero. The search direction of the algorithm is always a direction of decrease of $g(x)$. What is the direction p in which f decreases most rapidly from x?

In fact, we must readily admit that for any computer algorithm there exist nonlinear functions perverse enough to defeat the algorithm.

A rigorous analysis of the details will be deferred to Chapter 3. We defer to Section 7.1 consideration of this important practical topic called scaling.

Karmarkar defines a potential function $f(x)$ as ... The order of convergence of $\{r^k\}$ is defined as the supremum of the nonnegative numbers p satisfying The vector field over S defines a system of differential equations. We define a point x to be the center of H if x minimizes the logarithmic barrier function f on $Int(P_H)$.

The last equalities of (1) and (2) are to be taken as the definitions of A_i and A_j respectively. This definition is slightly more general than the customary definition in the literature ([5]) in that ...

This system serves as a continuous deformation from the artificial system into the system:

As in all linear programming problems, degeneracy, corresponding to a basic variable having the value zero, can occur in the transportation problem. If degeneracy is encountered in the simplex procedure, it can be handled quite easily by introduction of the standard perturbation method.

Example 6.3.1 demonstrates the effect of these conditions on a simple function. This chapter demonstrates that an efficient method for moving among basic solutions to the minimum can be constructed.

A matrix with most of its elements a_{ij} nonzero is referred to as a dense matrix.
depict Figure 1 depicts two convex functions on convex subsets of \mathbb{R}^n.

derive The above theorem will be used to derive some fundamental theorems for convex functions in the next chapter. We derive another representation of the set S. We derive the actual rate of convergence by considering, as usual, the standard quadratic problem with $f(x)$. We may then derive the convergence rate of this algorithm by slightly extending the analysis carried out for the method of steepest descent. We will describe the unified method in Section 2, and then derive in Section 3 a class of potential function reduction algorithms as special cases.

describe A very popular method for resolving the line search problem is the Fibonacci search method described in this section. An algorithm is described that solves the standard form primal-dual pair of linear programs. The last sections of the chapter are denoted to a itemize and analysis of the basic descent algorithms for unconstrained problems: steepest descent, Newton’s method, and coordinate descent. We turn now to a itemize of the basic techniques used for iteratively solving unconstrained minimization problems. We will describe the unified method in Section 2, and then derive in Section 3 a class of potential function reduction algorithms as special cases.

design It is designed so that once the primal feasibility error $\|Ax^k - b\|$ becomes less than or equal to the tolerance ϵ_p at some iteration k, the error will never be improved but maintained from then on. Most algorithms designed to solve large optimization problems are iterative in nature. This suggests flexibility in designing practically efficient algorithms. Carefully selected exercises are designed to help the student to get a grasp of the material and enhance his knowledge of global optimization methods.

desirable It is desirable to keep BB^T as sparse as the structure of B will allow.

despite Despite its simplicity, this is a rather deep result and is not easy to prove.

detail In Section 2 we give the details of the primal-dual exterior point algorithm. It is therefore appropriate to consider this class in greater detail and distinguish certain cases within it. Let us now consider in detail the proof of necessity in the previous theorem. We omit the details of the second part.

develop We shall develop the optimality criteria of this section without any differentiability assumptions on the functions involved.

device The potential function is a device to carry out the complexity analysis of his algorithm.

diagonal matrix We denote by $X = \text{diag} \ x \in \mathbb{R}^{n \times n}$ the diagonal matrix with the coordinates for the vector x.

differ Our strategy will differ from that in Section 1 in that ... The exact form of these constraints may differ from one problem to another. The primary differences between algorithms (steepest descent, Newton’s method, etc.) rest with the rule by which successive directions of movement are selected. There are a number of different approaches to this important phase of minimization.
A major difference in the Tomlin and projective transformation method of putting the problem into canonical form occurs when forming the matrix BB^T. It makes a main difference between the continuation algorithm and our algorithm that the trajectory traced by their algorithm runs through the exterior of the feasible region while the central trajectory traced by our algorithm runs through the interior of the feasible region.

The stopping criteria for optimization are a bit different than those for solving nonlinear equations. We derive another duality theorem under different hypothesis from those of Theorem 5 above.

That makes it difficult for people new in the field to learn the subject.

The main difficulty is the extremely unfavorable eigenvalue structure.

A new point is chosen along the Newton direction towards a point on the central trajectory running through the interior of the primal-dual feasible region to an optimal solution.

As long as one is taking steps in descent directions, what is the direction p in which f decreases most rapidly from x? One chooses a direction p from the current point x in which f decreases initially. The global strategy may take steps in, or close to, the steepest descent direction. The Newton directions toward the central trajectory induce a vector field. The search direction of the algorithm is always a direction of decrease of $g(x)$. We consider the search for $x = x_c + \lambda p$ along a general descent direction p from the current solution estimate x_c. we compute a Newton direction $(\Delta x, \Delta y, \Delta z)$ towards a point on the central trajectory.

Section 6 discusses the colinear scaling algorithm interpretation of the projective scaling algorithm.

I have thus, for example, avoided a lengthy discussion of duality and the dual-simplex method. Section 3 gives some assumptions which are necessary for the discussion of the theoretical computational complexity of the method. There is no compelling reason to confine our discussion to line searches in the quasi-Newton direction. We start our discussion of global methods by considering the unconstrained minimization problem.

If the solution to (26) is computed inaccurately, the new point is no longer feasible, which can lead to rapid divergence of the method.

The proof of the theorem is divided into two parts.

If b gives the desired reduction in potential then we are done.

Roughly speaking, the domain $[0, \infty]$ of the parameter t in (2) has been compactified into the domain $[0, 1]$ of the parameter θ in (3). The zero vector lies in the domain of quadratic convergence of Newton’s method. We compactify the domain of the parameter t. we derive useful information about the domain of infeasibility.
drawback He pointed out a drawback of this approach that the artificial primal-dual pair of linear programs involves large constants called the big M and artificial dense columns which often cause numerical instability and computational inefficiency.

To mitigate the drawback of interior point algorithms, they recently proposed an artificial self-dual linear program with a single big M as well as a numerical method for updating the big M.

drive Starting with such an a, a solution for the linear programming problem can be obtained by following the path of solution to the system (1) as a is driven to zero.

drop As t increases, the values of the basic variables change until a variable whose value is the first to drop to zero leaves the basis.

easy We will deal with (3) instead of (2) since the former is mathematically easier to handle.

effect Example 6.3.1 demonstrates the effect of these conditions on a simple function. There is a great deal of insight to be gained from an analysis of the effect of the difference step h_c on the convergence rate of the resultant finite-difference Newton method.

effective Genetic algorithms have been proven to be effective in solving global optimization problems.

efficiency The artificial dense columns often causes numerical instability and computational inefficiency.

effort It is not unusual to expend significant computational effort in getting close enough.

eliminate In order to be able to solve for x_1, x_2, x_3 sequentially, we eliminate each variable in turn from successive equations, so that (1),(2),(3) are transformed into (1),(2'),(3'). It can be eliminated from consideration.

emanate The trajectory emanates from the point x^0.

embed We embed the LCP in an artificial system of equations:

emphasis This book is intended to provide a technical description on the state-of-the-art development in advanced optimization techniques with emphasis on mathematical theory, implementation, and practical applications.

emphasize However, it should be emphasized that in solving the equations (1) we do not form an explicit representation of A^{-1} as an $n \times n$ matrix and then postmultiply it by the vector b. In particular, we emphasize the global and the polynomial-time convergence of the method applied to larger classes of LCPs. To emphasize the fact that only the basic variables x_1, x_2, x_3 are treated as unknowns, we write Ax as $A_B x_B + A_N x_N$ with ...

encounter Although our main concern is nonlinear problems, linear systems of the following type will be encountered very frequently: If degeneracy is encountered in the simplex procedure, it can be handled quite easily by introduction of the standard perturbation method.
Such a strategy will always end up using Newton’s method close to the solution. We end this section by remarking that ... Each chapter contains illustrative examples and ends with carefully selected exercises.

Carefully selected exercises are designed to help the student to get a grasp of the material and enhance his knowledge of global optimization methods.

In practice, one can expect to obtain a sufficiently approximate solution when the method stops, provided $\epsilon > 0$ is small enough.

The error at each iteration will be approximately the square of the previous error. The error will never be improved but maintained from then on.

Such an extension is especially useful when we deal with the LCP associated with a bimatrix game.

This is essential in examining whether the solution of the unconstrained problem converges to a solution of the constrained problem.

Our initial or current estimate of the answer is $x_c = 2$.

If $f(x)$ is expensive, an additional function evaluation is undesirable.

It may hold without satisfying such a constraint qualification, as evidenced by the following primal problem.

In the local approach, one examines the relation of a given point to its neighbors. This is essential in examining whether the solution of the unconstrained problem converges to a solution of the constrained problem. We shall now examine the process by which we obtained the solution.

We shall illustrate the simplex method on the following example:

A linear program is given in standard form except that one or more of the unknown variables is not required to be nonnegative. The computations proceed analogously to those of the usual simplex method, except that the choice of pivot must be modified slightly.

The other relations (1) and (2) play a role of excluding the possibility that the generated sequence $\{(x^k, y^k, z^k)\}$ might converge to an infeasible complementary solution.

Alternatively, we can change the parameters adaptively during the execution of the algorithm.

In practice, one can expect to obtain a sufficiently approximate solution when the method stops, provided $\epsilon > 0$ is small enough. Thus, for increasing c it is expected that the corresponding solution points will approach the feasible regions S.

expend It appears that the work expended in calculating the elements in these columns after each pivot is, in some sense, wasted effort. It is not unusual to expend significant computational effort in getting close enough. The work expended in calculating the elements in these columns after each pivot is wasted effort.

experience Extensive experience with the simplex procedure applied to problems from various fields has indicated that the method can be expected to converge to an optimum solution in about m pivot operations. We learned from computational experience with the SDPA

experiment We have not as yet experimented with the two possible methods of transforming a linear program when the optimal objective function value is not known.

explain Section 1 explains the basic idea.

explore We explore flexible choices of these two parameters which ensures the global convergence, in certain cases in polynomial time.

express The constraints of a linear programming can always be expressed in the form $Ax = b$ and $x \geq 0$ with $b \geq 0$. This is a convenient way of expressing the solution x, but there are far better ways of computing the solution than forming A^{-1} explicitly and premultiplying it into b;

extend All arguments can be extended to include degeneracy, and the simplex method itself can be easily modified to account for it. All the results of the previous section extend directly to strictly convex functions by changing the inequalities \geq and \leq by strict inequalities $>$ and $. The method of bisection also does not extend naturally to multiple dimensions.

extension Such an extension is especially useful when we deal with the LCP associated with a bimatrix game. This characterization has a natural extension to the global approach where convexity ensures that if the gradient vanishes at a point, that point is a global minimum point.

extract When rank $(A) = m$, the equation has $n - m$ degrees of freedom in its solution, in that we can extract m linearly independent columns from A and solve for the m associated variables in terms of the remaining $n - m$.

extreme The model (a) is an extreme variant of (c).

facilitate The function f facilitates the choice of θ for the step length.

fall back on We fall back on a step dictated by a global method.

feature In Practice an important feature of the active set method for quadratic programming is that the required matrix inverse does not need to be computed from scratch at each step. The distinctive feature of the exterior point algorithm mentioned above is a main advantage over primal-dual interior point algorithms. The dual quadratic programs 1 and 2 possess a nice feature not shared by the dual nonlinear programs 2.1.1 and 2.1.2.
field The Newton directions toward the central trajectory induce a vector field. The vector field over \(S \) defines a system of differential equations.

fix We fix \(\theta \) to be 1.

flexibility This suggests flexibility in designing practically efficient algorithms.

focus The method serves as a primal-dual interior point algorithm if we focus our attention to LCPs arising from linear programs. Most of the existing books in optimization focus on the problem of computing locally optimal solutions.

follow An equivalent way of stating that the mapping is one-to-one is as follows. The last inequality follows from (1), the equality before from (2), the equality before from (3), and the equality before from (4). We show how they follow from the results we have established.

for For if (1) did have a solution \(x \), say, then \(\alpha x \) would also be a solution of (1) for each \(\alpha \).

form A set of \(m \) linear equations in \(n \) variables \((x_1, x_2, ..., x_n) \) can be written in the form \(Ax = b \). An invertible projective transformation is of the form ... Each solution forms a trajectory (smooth curve) through each point \(x^0 \in S \) toward a solution of the LCP. In matrix form we write this as \(Ax = b \). The mapping \(f \) has the form \(f(x) = Mx + q \) for some positive semi-definite \(M \). The simplex tableau takes the initial form shown in Fig.3.2. This is defined for linear programs given in the inequality form: minimize \(c^T x \) subject to \(Ax \geq b \). We define the projective scaling algorithm for a linear program in the inequality form:

found A general idea of continuation methods founded on the system above is as follows.

fraction Pivots will occur in only a small fraction of the columns during the course of optimization.

framework He proposed a framework for applying Newton’s method to the linear programming problem. Section 6 will set the framework for the class of algorithms we want to consider. The system (1) provides us with a general framework for various homotopy continuation methods.

freedom The equation has \(n - m \) degrees of freedom in its solution, in that we can extract \(m \) linearly independent columns from \(A \) and solve for the \(m \) associated variables in terms of the remaining \(n - m \).

fundamental

Introduction to Global Optimization is a comprehensive textbook that covers the fundamentals in global optimization.

furnish This often furnishes the function value \(f(x^k) \) to Step 1.
gap Another purpose of this paper is to fill this gap. One objective of this book is to go
some way towards bridging this educational gap between theory and practice. This
book will bring together a comprehensive treatment of these techniques, thus filling
an existing gap in the scientific literature.

general In general we shall follow the convention of using upper case Latin letters to denote
matrices. In general, we prepare in advance two nonnegative continuous functions.

generically The set T generically forms a trajectory.

get By applying the lemma to A, we get x, y satisfying...

give Section 3 gives some assumptions which are necessary for the discussion of the theo-
retical computational complexity of the method. The choice of $\eta = \sqrt{m}e$ gives an
approximate solution for a large μ. The following lemma gives a set of inequalities that
follow directly from the definition of x_k and the inequality $c_{k+1} > c_k$. This equation
shows that y gives the sensitivity of the optimal cost with respect to small changes in
the vector b.

govern We restrict ourselves to simple cases where the change of the parameters is governed
by linear functions:

guarantee Again, just as in the case of the saddlepoint necessary optimality criteria, there
is no guarantee that $r > 0$ in Theorem 2 above.

disable If degeneracy is encountered in the simplex procedure, it can be handled quite easily
by introduction of the standard perturbation method. This generalization allow us to
disable a somewhat wider class of problems later. We will deal with (3) instead of (2)
since the former is mathematically easier to handle.

happen For the above simple problem, the criterion happens to both a necessary and a
sufficient optimality criteria for x to a solution. Since the square matrix A_B happens
to be nonsingular, both sides of (7.4) may be multiplied by A_B^{-1} on the left.

have to We only have to deal with the case where ...

help She helps children find books they can read. The function also helps establishing either
global or polynomial-time convergence. Carefully selected exercises are designed to
help the student to get a grasp of the material and enhance his knowledge of global
optimization methods.

hence The primal problem has one feasible (and hence minimal) point.

hold The constraint qualification in the above theorem is merely a sufficient condition for
the theorem to hold. Virtually the same convergence properties hold for the barrier
method as for the penalty method.

hybrid We combine a global method with Newton’s method into a hybrid algorithm.

hypothesis By hypothesis A does not contain the origin.
A general idea of continuation methods founded on the system above is as follows. Karmarkar’s linear programming algorithm uses ideas from nonlinear optimization. The basic idea forming a successful nonlinear algorithm is to combine a globally convergent strategy with a fast local strategy in a way that derives the benefits of both. The idea of a penalty function method is to replace problem (1) by an unconstrained problem of the form The idea of the simplex method is to proceed from one basic feasible solution to another, in such a way as to continually decrease the value of the objective function until a minimum is reached. The idea underlying active set methods is to partition inequality constraints into two groups. The idea underlying quasi-Newton methods is to use an approximation to the inverse Hessian in place of the true inverse. The idea underlying the method is quite simple. This idea provides a theoretical basis for various methods.

The proof of Theorems 3 and 4 above are essentially identical to the proofs of Theorems 1 and 2 respectively. The sufficiency proof is essentially identical to the sufficiency proof of Theorem 2. This algorithm is identical to a global Newton method algorithm.

The scaling algorithm is shown to be identified by a suitable transformation with a global Newton method for a logarithmic barrier function.

$I \in \mathbb{R}^{n \times n}$ denotes the identity.

To illustrate the method of dealing with degeneracy, consider a modification of Example 4, with the fourth row sum changed from 60 to 20. We briefly illustrate how this can be done. We shall illustrate the simplex method on the following example:

The field of optimization has been making a significant impact on many disciplines. Some important general implications follow from this kind of construction. The backward implication is equivalent logically to ... The backward implication is trivial because ... We now prove the forward implication.

We shall therefore always impose this as a requirement.

This means that when the current solution approximation is good enough, it will be improved rapidly and with relative ease.

If in addition, there exists a constant ..., then

If ... in place of ... then

It is important to note the meaning of this step in terms of model problems.

We reformulate the set S in terms of the solution set of a system consisting of n piecewise C^1 equations and $n + 1$ variables.

The inability to determine the existence or uniqueness of solutions is usually not the primary concern in practice.
Incidentally Incidentally, the other claim that ” . . . ” is incorrect.

Incline Small libraries are inclined to use Dewey Decimal system, larger libraries the Library of Congress system.

Include The method include as special cases many interior point algorithms. The book includes many results from our interdisciplinary research on the topic. The book includes algorithms, applications, and complexity results for quadratic programming.

Incorporate If the global method is incorporated properly, the algorithm will also be globally convergent. We incorporate into the globalizing strategy the requirement that $f(x^k)$ decreases as k increases. We need to incorporate Newton’s method into a more robust method that will be successful from farther starting points. We need to incorporate the global methods of Section 2.5.

Incorrect Incidentally, the other claim that ” . . . ” is incorrect.

Increase To determine the leaving variable, we increase the value t of the entering variable from zero to some positive level.

Indebted We are indebted to ... for introducing us to the literature on collinear scaling algorithms.

Indicate The proof of this theorem is constructive, in the sense that it indicates how the steps of the simplex method proceed. The relative cost coefficients r_j indicate whether the value of the objective will increase or decrease if x_j is pivoted into the solution. The vector of reduced costs indicates how much the objective function P increases as x_N changes. This inequality indicates progress toward a minimum.

Induce The Newton directions toward the central trajectory induce a vector field.

Induction The proof is by induction on p.

Infeasibility We derive information about the domain of infeasibility.

Infinity x^p tends to infinity with p.

Information Catalog cards give a great deal of information about the book. If (1) holds, we can derive information on the infeasibility such that the primal-dual pair of P and D has no feasible solution in a certain wide region of the primal-dual space. we derive useful information about the domain of infeasibility in the sense that we obtain a certain wide region in the primal-dual space where the problems do not have optimal solutions.

Ingredient One of the main ingredients of the unified method is the potential function. The main ingredients we use to do this are

Inherit In this sense convex and concave functions inherit some of the important properties of linear functions.
initiate It is necessary to develop a means for determining a initial basic feasible solution so that the simplex method can be initiated. This provides a means for initiating the simplex procedure.

insensitive Generally, the order of convergence of a sequence is insensitive to the particular error function used.

insight It provides significant insight into various quasi-Newton methods discussed in this chapter. There is a great deal of insight to be gained from an analysis of the effect of the difference step h_c on the convergence rate of the resultant finite-difference Newton method.

insightful It is very insightful to consider the space in which various interior point algorithms work.

instead of We will deal with (3) instead of (2) since the former is mathematically easier to handle.

integration We specify the step size for numerical integration of the vector field.

intend It is not intended to be an exhaustive review of the subject; there are several excellent texts which cover the subject in great depth. This book is intended as a text book covering the central concepts of practical optimization techniques. This book is intended to provide a technical description on the state-of-the-art development in advanced optimization techniques.

interchange Another strategy is to interchange simultaneously both row k with row r and column k with column s for which a_{rs} is the largest element in magnitude in the entire remaining portion of the matrix.

interdisciplinary The field of optimization is interdisciplinary in nature. The book includes many results from our interdisciplinary research on the topic.

interest In recent years there has been an extensive interest in the duality theory of nonlinear programming. Penalty and barrier methods are of great interest to both the practitioner and the theorist.

interpret In Section 2 we interpret A_i as the scalar product of A_i and x.

interpretation In order to formulate this interpretation precisely we use a full-dimensional version of Karmarkar’s algorithm. There are two dual interpretations of the pivot procedure. This corresponds to the most natural interpretation of (1) as a set of m equations. We gave an explicit interpretation of Karmarkar’s algorithm as a global Newton method.

introduction After the introduction of the slack variables x_{n+1}, \ldots, x_{n+m}, this problem may be recorded as ...
involves Many linear programming problems involve explicit upper bounds on individual variables. Subsequent sections will establish optimality criteria that involve differentiable functions. The system involves the parameter $\beta \in [0,1]$. We obtain some fundamental theorems involving convex functions.

issue In considering iterative algorithms for finding either local or global minimum points, there are two distinct issues: global convergence properties and local convergence properties. There are two fundamental issues associated with the methods of this chapter. An important issue regarding interior-point methods is how we determine a step length.

iterate A sequence of his algorithm iterates $\{x^k : k = 1, 2, \ldots\}$. At each iterate (x^k, y^k, z^k) of a primal-dual exterior point algorithm, we compute a Newton direction $(\Delta x, \Delta y, \Delta z)$ towards a point on the central trajectory. But the algorithm does not confine the iterates within the feasible region. If $\{x^k\}$ is a set of projective scaling algorithm iterates for the original linear program, then ... The iterates stay in the positive orthant.

iteration Each iteration of the revised simplex method may or may not take less time than the corresponding iteration of the standard simplex method. We continue running the modified algorithm beyond the s’th iteration.

judge The theoretical and the practical criteria for judging the efficiency of algorithms are radically different.

keep In order to keep the book within moderate size, ... It is desirable to keep BB^T as sparse as the structure of B will allow.

kind The definition of \mathcal{N} consists of three kinds of relations ... This algorithm is a kind of variable-metric descent method for minimizing $g(x)$.

know In view of Theorem 3.1, we know that ...

Several Classes of LCPs are known to be solvable by Lemke’s method. The pair of planes G and H is not explicitly known. Their algorithm is known to reduce the duality gap $(x^k)^T z^k$ by a constant factor.

knowledge Knowledge of the contents of Appendix B is assumed from here on.

known The theorem is widely known under the name Kuhn-Tucker, even though Kuhn and Tucker required both convexity and differentiability in its derivation.

large The zero vector is an approximate zero of the system of equations for a sufficiently large.

lead If the solution to (26) is computed inaccurately, the new point is no longer feasible, which can lead to rapid divergence of the method. The central trajectory constitutes a smooth curve which leads to a solution of the LCP. This more sophisticated viewpoint leads to a compact notational representation, increased insight into the simplex process, and to alternative methods for implementation. Thousands of cards lead users to written materials they need.
leave If it leaves the basis, then the \(e \) can be dropped.

length The column vector \(x \) has length \(n + m \) and the column vector \(b \) has length \(m \).

linearize The differentiability property of the functions is used to linearize the nonlinear
programming problem.

locate Our optimization algorithms at best can locate one local minimum.

maintain To determine the leaving variable, we increase the value \(t \) of the entering variable
from zero to some positive level, maintaining the values of the remaining nonbasic
variables at their zero levels. We maintain two parameters \(u \) and \(l \) which serve as
upper and lower bounds of \(f \).

make sure The strategy is to make sure that each step decreases the value of \(f \).

marginal This makes the method very marginal for practical use.

matrix A lower-triangular matrix is a square matrix with all zeros above the diagonal.

mean This means that ... This means that when the current solution approximation is good
enough, it will be improved rapidly and with relative ease. This means we measure
convergence by how fast the objective converges to its minimum.

meaning It is important to note the meaning of this step in terms of model problems.

means An initial basic feasible solution is not always apparent for other types of linear
programs, however, and it is necessary to develop a means for determining one so that
the simplex method can be initiated.

measure The function \(f \) used in this way to measure convergence is called the error func-
tion.

mention It should be mentioned that ... We mentioned earlier that there is an extensive
literature on the duality theory of nonlinear programming.

method The zero vector lies in the domain of quadratic convergence of Newton’s method.

might Practically, it might be too complicated to compute such a small number.

model At each iteration we have constructed a local model of our function \(f(x) \) and solved
for the root of the model.

modify All arguments can be extended to include degeneracy, and the simplex method
itself can be easily modified to account for it. In order to overcome the shortcomings
of Theorem 2, we need to somewhat modify the algorithm. The equalities in (3),
however, need some modification. The modification is done by replacing Step 3 by
Step 3’ below.

more The more a person knows about the processes, the better able he is to use the library.
motivate The gradient projection method is motivated by the ordinary method of steepest
descent for unconstrained problems.

move We generates a sequence \(\{(x^k, y^k, z^k)\} \) to approach optimal solutions moving through
not only the interior but also the exterior of the feasible region of the primal-dual pair
of \(P \) and \(D \).

multiply Since the square matrix \(A_B \) happens to be nonsingular, both sides of (7.4) may
be multiplied by \(A_B^{-1} \) on the left. The reader may which to verify the formula by pre-
or post-multiplying the equality (1) by the equality (2).

natural It is natural to ask whether the Newton direction is a descent direction.

necessary Each iteration reduces the value of \(f \) but not necessary that of \(g \). For a basic
feasible solution to be optimal it is necessary and sufficient that there is a correspond-
ing basis for which \(d_j \geq 0, j = 1, \ldots, n-m \). Section 3 gives some assumptions which
are necessary for the discussion of the theoretical computational complexity of the
method.

necessary to We discuss computer-dependent criteria necessary to successful computa-
tional algorithms.

need How many iterations are needed for \(c_k \) to become small? However, \(f \) need not be
convex in order that the set \(A \) be convex. One needs to have as a starting point, an
approximate zero of the system of equations. Only \(O(\log N) \) optimizations of \(f(z) \)
need to be done to obtain a point that reduces \(P(z) \) by a constant. Since not all
properties of convex functions are needed in establishing some of the previous results,
a mor general type of function will also work. The notion of direction needs to be
made more explicit before we can answer this question. We need only establish the
theorem under the constraint qualification.

nevertheless Nevertheless, we are able, by continuing with the same basic techniques as
before, to illuminate their most important features.

next Lemma 1 is next used to show that ...

notation Using our notation of \(a_j \) for the \(j \)th column of \(A \), we could write the matrix
equation (1) in the form

note This has been noted also by Gill et al. [2], however in a different context.

notion First we define the notion of Lipschitz continuity. It is similar (but not identical)
to a special case of the notion of center in the method of centers of [3]. The notion
of direction needs to be made more explicit before we can answer this question. This
notion was first studied extensively by Sonnevend who calls it the analytic center of
\(H \), and by [2]. We define several notions related to the speed of convergence of such
a sequence.
Now, . . .

Now that we can recognize a solution, let us decide how to compute one.

The nodes of a graph are usually numbered, say, 1, 2, . . . , n.

Another objective is to describe some of the advances in LP computational practice. One objective of this book is to go some way towards bridging this educational gap between theory and practice.

We first observe that in addition to (1) ~ (4) the inequalities ... hold.

The solution x can be obtained in far fewer steps than obtaining A^{-1} explicitly.

You may have occasion to use a library.

Pivots will occur in only a small fraction of the columns during the course of optimization.

Quasi-Newton methods offer the possibility of less numerical linear algebra computation per step. To the practitioner they offer a simple straightforward method for handling constrained problems that can be implemented without sophisticated computer programming.

We omit the details of the second part.

Because of (1) we need only prove that ... We only have to deal with the case where ...

In practice, the number of iterations is of order $2 - 4$ times the number of rows. The problem can be transformed into an artificial problem of order $2n$ such that ...

The central trajectory was originally studied in the context of linear programs.

The iterates stay in the positive orthant.

This book is an outgrowth of a couple of special topic courses that we have been teaching for the past five years.
The framework for doing this is outlined in Algorithm 6.1.1 below. We outline briefly here the main duality results of linear programming.

In order to overcome the shortcomings of Theorem 2, we need to somewhat modify the algorithm.

Obviously, a pair \((x, y)\) solves the LCP.

But the second part, which requires some other definitions, would be lengthy but rather standard in the theory of continuation methods. The proof of the theorem is divided into two parts. We omit the details of the second part.

A new class of continuation methods is presented which, in particular, solve the LCP with copositive-plus matrices. In particular, we emphasize the global and the polynomial-time convergence of the method applied to larger classes of LCPs. In particular, we have the following results.

A matrix (vector) may be partitioned into two or more smaller submatrices (subvectors). As in our example, this partition induces a partition of \(A\) into \(A_B\) and \(A_N\). a partition of \(x\) into \(x_B\) and \(x_N\), and a partition of \(c\) into \(c_B\) and \(c_N\). Each basic feasible solution \(x^*\) of this problem partitions \(x_1, x_2, ..., x_n\) into \(m\) basic and \(n\) nonbasic variables. We partition \(A\) into the submatrices \(B\) and \(N\) such that \(A = [AB]\).

The approximation is accomplished in the case of penalty methods by adding to the objective function a term that prescribes a high cost for violation of the constraints.

We will use a simple philosophy to incorporate Newton’s method into a globally convergent algorithm: use Newton’s method ...

The effect of such a projective transformation is pictured in Figure 1.1.

The relative cost coefficients \(r_j\) indicate whether the value of the objective will increase or decrease if \(x_j\) is pivoted into the solution.

An !e is placed in the array for the zero-valued basic variable as shown below.

The plan of this chapter is as follows.

It is intuitively plausible that if we had two disjoint convex sets in \(R^n\), then we could construct a plane such that one set would lie on one side of the plane and the other set on the other side.

At this point we have covered the steps 2, 3 and 4. The most important point is to try Newton’s method first at each iteration.

We can now pose our question about a most rapid descent direction for a given norm as ...

These theorems assert the existence of solutions of two linear systems that have a certain positivity property.
posses Primal methods posses three significant advantages that recommend their use as general procedures applicable to almost all nonlinear programming problems.

possibility Quasi-Newton methods offer the possibility of less numerical linear algebra computation per step. We consider the possibility of increasing only one nonbasic variable from zero, while all the others stay at zero.

practical A narrow neighborhood yields polynomial-time algorithms but is not good for practical purposes.

practically Practically, it might be too complicated to compute such a small number.

practice In Practice an important feature of the active set method for quadratic programming is that the required matrix inverse does not need to be computed from scratch at each step. In practice, one can expect to obtain a sufficiently approximate solution when the method stops. provided $\epsilon > 0$ is small enough.

prepare We usually need to prepare an artificial primal-dual pair of linear programs having a known interior feasible solution from which the algorithm starts.

preclude This precludes the first unsuccessful choice of points but not the second.

preliminary Our preliminary task is to develop an understanding of the relationship between dictionaries and the original data.

prepare In general, we prepare in advance two nonnegative continuous functions. We prepare for a study of this most important aspect of nonlinear programming.

present A new class of continuation methods is presented which, in particular, solve the LCP with copositive-plus matrices. Section 2 presents a large class of potential reduction algorithms as special cases of the unified method.

presentation The presentation we have followed here resembles that given in [Dorm 60].

preserve We adjust the values of the basic variables so as to preserve the constraints $Ax = b$.

prevent The case where the angle approaches 90° can be prevented by the algorithm.

prior The constant is not known prior to starting the algorithm.

problem The general formulation of the problem is to find $x \in R^n$ to maximize $c^T x$ subject to $Ax = b$ and $x \geq 0$. The primal-dual algorithm of this type is known to work very efficiently on practical problems. The problem in the second example is that ...

procedure Above, we analyzed the convergence of various curve fitting procedures in the neighborhood of the solution point. These line search techniques, which are really procedures for solving one-dimensional minimization problems, form the backbone of nonlinear programming algorithms.
Now assume that the lemma is true for a matrix \(A \) of \(p \) rows and proceed to prove it for a matrix \(\tilde{A} \) of \(p + 1 \) rows. The algorithm proceeds in stages where each stage may consist of a number of iterations. The computations proceed analogously to those of the usual simplex method, except that the choice of pivot must be modified slightly.

First, we note, as in Section 7.8, that in order that the process (1) be guaranteed to be a descent method for small values of \(t \), it is necessary in general to require that \(S_k \) be positive definite. For general nonlinear functions that cannot be minimized analytically, this process actually is accomplished by searching, in an intelligent manner, along the line for the minimum point. In this method the Hessian at the initial point \(x_0 \) is used throughout the process. One starts at an initial point; determines a direction of movement; and then moves in that direction to a minimum on that line. At the new point a new direction is determined and the process is repeated. The form of the approximation ranges from the simplest where it remains fixed throughout the iterative process to the more advanced where approximations are built up on the basis of information gathered during the descent process. The fundamental idea behind most quasi-Newton methods is to try to construct the inverse Hessian, or an approximation of it, using information gathered as the descent process progresses. The logical thing to do next is to apply the same process from the new current estimate \(x_c = 1.75 \). The process of determining the minimum point on a given line is called line search.

However, the point may not produce a sufficient reduction in the objective function of (5).

This inequality indicates progress toward a minimum. This inequality measures progress toward a zero of \(f'(x) \).

The proof of this theorem is constructive, in the sense that it indicates how the steps of the simplex method proceed.

Newton’s method is the prototype of the algorithms we will generate.

The system (1) provides us with a general framework for various homotopy continuation methods. This idea provides a theoretical basis for various methods. This topic provides a foundation for a wide assortment of linear programming applications, and, in fact, provides a different approach to the problems considered in the first part of the chapter.

The other relations (1) and (2) play a role of excluding the possibility that the generated sequence \(\{ (x^k, y^k, z^k) \} \) might converge to an infeasible complementary solution.

A narrow neighborhood yields polynomial-time algorithms but is not good for practical purposes. The purpose, organization and use of the modular system of algorithms is discussed at the beginning of Appendix A.
The linear programming problems and its dual can be put together as a linear complementarity problem.

The answer is a qualified "Yes".

A second natural question is: as long as one is taking steps in descent directions, what is the direction \(p \) in which \(f \) decreases most rapidly from \(x \). In general, the questions of existence and uniqueness are beyond the capabilities one can expect of algorithms that solve nonlinear problems. Two questions immediately arise: "will this method work?" and, "How should \(h_c \) be chosen?"

The form of the approximation ranges from the simplest where it remains fixed throughout the iterative process to the more advanced where approximations are built up on the basis of information gathered during the descent process.

The method does not trace the central trajectory within the interior of the feasible domain but rather as an exterior point method.

The sequence is said to converge linearly to \(r^* \) with convergence ration \(\beta \).

The generated sequence reaches the solution point exactly after a finite number of steps.

Equation (2-5) can be rearranged to the form \(Bx_B = b - NX_N \).

The assignment problem is a very special case of the transportation problem for two reasons. The reason for studying one-variable problems separately is that ... There is no compelling reason to confine our discussion to line searches in the quasi-Newton direction. This is the reason why modern computer programs for solving LP problems use some form of the revised simplex method.

It seems reasonable that the method should work almost as well as Newton’s method, and we will see later that it does.

We recommend reading this discussion now if you have not previously done so.

After the introduction of the slack variables \(x_{n+1}, \ldots, x_{n+m} \), this problem may be recorded as ...

Redefine \(aa \) to be \(a \).

Each iteration reduces the value of \(f \) but not necessary that of \(g \). The distance from the limit \(r^* \) is reduced, at least in the tail, by the \(p^\text{th} \) power in a single step. The function \(f(x) \) is reduced by at least a constant amount each step.

One of the points in the set gives the desired reduction in potential \(P(z) \).

The equality constraint \(B_kx = d_k \) is redundant and can be dropped from the minimization problem without changing independent rows of \(B \).
A matrix with most of its elements a_{ij} nonzero is referred to as a dense matrix. In later chapters as more efficient techniques, reference is continually made to the basic techniques of this chapter both for guidance and as points of comparison. The negative of the gradient direction is referred to as the steepest-descent direction. Thus linear convergence is sometime referred to as geometric convergence. We shall refer to such a set as robust. We shall refer to this selection rule as the largest-coefficient rule.

Some references that consider the problems of this chapter in detail are Avriel(1976), ... We now save the first row for future reference.

Each library reflects the community it serves. The tolerance τ is chosen to reflect the user’s idea of being close enough to zero for this problem.

We reformulate the set S in terms of the solution set of a system consisting of n piecewise C^1 equations and $n + 1$ variables.

Conjugate direction methods can be regarded as being somewhat intermediate between the method of steepest descent and Newton’s method. The correspondence $u \rightarrow u^+$ should be regarded as piecewise linear mapping. The theorem above should be regarded as a general tool for convergence analysis. We now summarize main convergence results with regard to the potential reduction algorithms described so far.

This summary of a report which appeared under the same title, where an extensive study was carried out regarding a unified approach for interior point algorithms.

The criteria relate the solutions of a minimization problem, a local minimization problem, and two saddle point problems to each other. The duality results we are about to establish relate solutions x of MP and y of DP to each other. This interpretation of the dual vector y is intimately related to its interpretation as a vector of simplex multipliers.

Figure 2 shows logical the relation between the lemmas.

This problem is closely related to solving one nonlinear equation in one unknown.

In general, I have concentrated on aspects relevant to the bulk of current commercial practice.

Most primal methods do not rely on special problem structure such as convexity. The algorithm does not rely on any nondegeneracy assumption on the LCP.

Otherwise the current point remains unchanged.

We maintain the values of the remaining nonbasic variables at their zero levels and adjusting the values of the basic variables so as to preserve the constraints $Ax = b$.

We remind the reader that a modular system of algorithms for nonlinear equations and unconstrained minimization is provided in Appendix A.
In each iteration of the simplex method, one basic feasible solution is replaced by another.

Each entry in the table represents the average number of iterations over 100 problems. The first question is represented by a test such as, “Is $|f(x)| < \tau$?”. When A is square and nonsingular, it is notationally convenient to represent the solution in the form $x = A^{-1}b$.

Assume that we have a basic feasible solution, with some representation of B^{-1} and current right-hand side $\tilde{b} = B^{-1}b$. The representation (1) can be interpreted as a problem in \mathbb{R}^n. We derive another representation of the set S

An iterate (x^k, y^k, z^k) is required to satisfy neither the equality constraints $Ax = b$ of P nor $A^T y + z = c$ of D, but only the positivity $x > 0$ and $z > 0$. In (1), we are required to find n weights x_1, x_2, \ldots, x_n such that b is a linear combination of the vectors a^i. Primal methods require a phase 1 procedure to obtain an initial feasible point. We will require that ...

No differentiability or explicit continuity requirements are mad on the functions introduced in this chapter.

The inequality (1) closely resembles the error bound given by the Taylor series with remainder. The presentation we have followed here resembles that given in [Dorm 60].

If we can find such a point that reduces the potential $P(z)$ then the current point is reset to this point.

An x is a feasible solution (respectively, a strictly positive feasible solution) of the problem if it satisfies $g(x) \geq 0$ (respectively, $g(x) > 0$). We also say that (x, y, z) is a feasible solution (resp. an interior feasible solution, an optimal solution) of the primal-dual pair of P and D if x and (y, z) are feasible solutions (resp. interior feasible solutions, optimal solutions) of the problems P and D, respectively.

This can be restated as: ...

The generated sequence $\{(x^k, y^k, z^k)\}$ is, however, not restricted to the interior of the feasible region We restrict ourselves to simple cases where the change of the parameters is governed by linear functions:

The scalar α is chosen to minimize the objective function f with the restriction that the point x^{k+1} and the line segment joining x^k and x^{k+1} be feasible.

A unique solution results, however, if $n - m$ additional independent linear equations are adjoined. Results obtained for quasiconvex functions can be changed into results fro quasiconcave functions by the appropriate multiplication by -1, and vice versa. The revised simplex procedure can result in considerable computational advantage. The revised simplex procedure can result in considerable computational advantage. We append a row at the bottom consisting of the relative cost coefficients and the
negative of the current cost. The result is a simplex method. We combine now all the fundamental results of linear programming in the following theorem. We now summarize main convergence results with regard to the potential reduction algorithms described so far.

retain Such a strategy will retain its fast local convergence rate.

return We now return to consideration of general nonlinear programming problems. We shall return to this point in Section 2.

rewrite With the mapping \(u \) we can rewrite the LCP as the system of piecewise linear equations.

right-hand Assume that we have a basic feasible solution, with some representation of \(B^{-1} \) and current right-hand side \(\bar{b} = B^{-1}b \).

rise The degenerate case can give rise to the possibility of cycling in a set of optimal bases. The use of large numbers give rise to severe problems in numerical accuracy, so the big-\(M \) method deserves little credibility.

role Duality plays a crucial role in the theory and computational algorithms of linear programming. These theorems in turn will play a similar crucial role in deriving the necessary optimality conditions of nonlinear programming in Chapter 5.

roughly speaking Roughly speaking, the domain \([0, \infty]\) of the parameter \(t \) in (2) has been compactified into the domain \([0, 1]\) of the parameter \(\theta \) in (3).

rule This paper proposes a rule for controlling the step length with which the algorithm takes large distinct step lengths in the primal and dual spaces. With the rule, the algorithm takes large distinct step lengths.

same The relative cost coefficients will then be the same as in Example 4. Virtually the same convergence properties hold for the barrier method as for the penalty method.

satisfy By taking \(u = 0 \), the relations (3) to (6) are satisfied because \(b = 0 \).

save The revised simplex method can frequently save computational effort. We now save the first row for future reference.

say The nodes of a graph are usually numbered, say, 1, 2, \ldots, \(n \). We might say that the order of convergence is a measure of how good the worst part of the tail is.

scale This test is very sensitive to the scale of \(f(x) \).

scatter Most of the theory and their applications are widely scattered in journals, technical reports, and conference proceedings of various fields.

scheme The revised simplex method is a scheme for ordering the computations required of the simplex method so that unnecessary calculations are avoided.
We consider the search for $x = x_c + \lambda p$ along a general descent direction p from the current solution estimate x.

However, if $A_p x < 0$, we apply the lemma a second time to the matrix B:

In the first five sections of this chapter ... In the last few sections ... We need to incorporate the global methods of Section 2.5.

It will be seen, however, that this topic provides a foundation for a wide assortment of linear programming applications. The solution to (8) is easily seen to be ...

If it seems to be taking a reasonable step, use it. It does not seem to be an interior point method.

It does seem to be common sense to require that ... The proof of this theorem is constructive, in the sense that it indicates how the steps of the simplex method proceed. The work expended in calculating the elements in these columns after each pivot is, in some sense, wasted effort.

The steepest descent direction is very sensitive to changes in the scale of x, while the Newton direction is independent of such changes. This test is very sensitive to the scale of $f(x)$.

These are called spherical bounded sets of constraints in the sequel.

The sequence has at least one accumulation point. We generates a sequence $\{(x^k, y^k, z^k)\}$ to approach optimal solutions moving through not only the interior but also the exterior of the feasible region of the primal-dual pair of P and D.

The method serves as a primal-dual interior point algorithm if we focus our attention to LCPs arising from linear programs. The public library often serves as a cultural center for the community. These algorithms serve as primary models for the development and analysis of all others discussed in the book. This system serves as a continuous deformation from the artificial system into the system:

A basic solution is defined as one on which the nonbasics are set at their bound, in this case zero.

Thus the exterior point algorithm shares this basic structure with many of the primal-dual interior point algorithms developed so far.

In order to overcome the shortcomings of Theorem 2, we need to somewhat modify the algorithm.

In the last chapter, Newton’s method was shown to be locally q-quadratically convergent. It can be easily shown that ... The scaling algorithm is shown to be identified by a suitable transformation with a global Newton method for a logarithmic barrier function. This equation shows that y gives the sensitivity of the optimal cost with respect to small changes in the vector b.

32
The structure of the assignment problem is of theoretical significance.

The concave case is similarly proved. This criteria is similar in spirit to the necessary optimality criteria of Fritz John.

The affine invariance of x_H is proved by a simple computation, see [1], Theorem 3.1.

The system (1) can be further simplified to $Ax = b$.

In this section a procedure is described for solving linear programming problems by working simultaneously on the primal and the dual problems.

Many linear programs arising from practical situations involve variables that are subject to both lower and upper bounds. The situation with respect to necessary optimality criteria is considerably more complicated than the situation with respect to sufficient optimality criteria. The two situations are compared in the following table.

We examine the nonbasic variables as possible candidates for change so as to obtain an improved solution.

A preliminary step of the method consists of introducing so-called slack variables.

Any limit point of the sequence is a solution to (1).

Several Classes of LCPs are known to be solvable by Lemke’s method.

Let x solve (1). The x solves (1) for $\mu = 0$. The point $y = e + x$ solves (6) subject to (7).

This generalization will allow us to handle a somewhat wider class of problems.

When we speak of a direction p, we assume that this normalization has been carried out.

We might specify $n - m$ equations of the form $e^k x = 0$. We now specify how our line-search algorithm will choose λ_k. We specify the step size for numerical integration of the vector field.

The artificial dense columns often causes numerical instability and computational inefficiency.

It may not converge at all from a poor start. Starting with such an a, a solution for the linear programming problem can be obtained by following the path of solution to the system (1) as a is driven to zero. We start our discussion of global methods by considering the unconstrained minimization problem. We start with an extended basic feasible solution to the problem.

The statement is easily seen to be symmetric in f and g.
The primal-dual exterior point algorithm which we will discuss has stemmed from the primal-dual interior point algorithm.

If it seems to be taking a reasonable step, use it. The distance from the limit r^* is reduced, at least in the tail, by the pth power in a single step. The idea of feasible direction methods is to take steps through the feasible region of the form $x^{k+1} = x^k + \alpha_k d^k$. The primal-dual exterior point algorithm takes large distinct step lengths α_k^p in the primal space and α_k^d in the dual space.

Assume that the algorithm has stopped at Step 2 with the stopping criterion (1). The modified algorithm has stopped at an sth iteration with satisfying the criterion (2). We can stop when $x^k < \epsilon$ and get a solution.

These criteria are quite straightforward to obtain and need no complicated machinery to derive.

Another strategy is to interchange simultaneously both row k with row r and column k with column s for which a_{rs} is the largest element in magnitude in the entire remaining portion of the matrix. The modern strategy is to start with $\lambda_k = 1$. The strategies for getting close constitute the major part of the program and the programming. This strategy is called complete pivoting.

The above lemma cannot be strengthened to $x \in W \rightarrow cx > 0$ without some extra assumptions. The above theorem can be strengthened by dropping the assumption that ...

The structure of a matrix is the pattern in which the nonzero coefficients appear. The structure of the assignment problem is of theoretical significance. Thus the exterior point algorithm shares this basic structure with many of the primal-dual interior point algorithms developed so far.

Many numerical studies show that the algorithm solves large scale practical problems very efficiently. The central trajectory was originally studied in the context of linear programs. The purpose of this note is to summarize a study which the authors have carried out in the paper [1]. This remains for further study. The individual chapter can be studied independently or as part of a larger, more comprehensive course.

Many linear programs arising from practical situations involve variables that are subject to both lower and upper bounds. The variable x_i is subject to no finite bounds.

We substitute $u_1 - v_1$ for x_1 everywhere in (1).

Subtracting (10) from (11) yields ... To eliminate x_1 from all equations but the first we subtract from the ith equation c times the first equation for $i = 2, \ldots, n$.

For a basic feasible solution to be optimal it is necessary and sufficient that there is a corresponding basis for which $d_j \geq 0, j = 1, \ldots, n - m$. 34
suggest These results suggest that one consider other algorithms based on minimizing the potential function $g(x)$ by quasi-Newton methods. This suggests flexibility in designing practically efficient algorithms.

suit The partial conjugate gradient method proposed and analyzed in Section 8.5 is ideally suited to penalty or barrier problems having only a few active constraints.

suitable The text is suitable for a first-year graduate course in electrical and computer engineering.

sum Each point in the sum is a positive semi-definite matrix.

summarize The purpose of this note is to summarize a study which the authors have carried out in the paper [1]. We now summarize main convergence results with regard to the potential reduction algorithms described so far. We summarize in Figure 1 the relationships between the solutions of various problems of this section.

summary This summary of a report which appeared under the same title, where an extensive study was carried out regarding a unified approach for interior point algorithms.

supports This theorem supports the intuitive notion that for the quadratic problem one should strive to make S_k close to Q^{-1} since then both b_k and B_k would be close to unity and convergence would be rapid.

take Since $x_N = 0$, x_B takes the numerical value of \bar{b} and the objective function P takes on the numerical value of $c^T\bar{b}$.

talk The main theorem talks about the existence and uniqueness of the central trajectory.

task Our preliminary task is to develop an understanding of the relationship between dictionaries and the original data.

tend x^p tends to infinity with p.

term The first term comes from the objective function of the quadratic programming problem above. We have thus solved for m of the variables (x_B) in terms of the other $(n-m)$ variables (x_N).

terminology This section covers some of the basic graph and network terminology and concepts necessary for the development of this alternative approach.

that Each iteration reduces the value of f but not necessary that of g. The classic example of the assignment problem is that of optimally assigning n workers to n jobs. Our notation is slightly different from that used the previous paper.
then The error will never be improved but maintained from then on.

theory In theory we choose $\epsilon = 2^{-2L}$ so that an exact solution of the LCP can be computed from the terminal point of the unified method.

those Both of these fundamental methods have convergence properties analogous to those of steepest descent. The areas of application in which the assignment problem arises are usually distinct from those of the more general transportation problem. The computations proceed analogously to those of the usual simplex method, except that the choice of pivot must be modified slightly.

time Each iteration of the revised simplex method may or may not take less time than the corresponding iteration of the standard simplex method. In practice, the number of iterations is of order $2 - 4$ times the number of rows. The total running time has been found to correspond roughly to the equation $\text{Time} = K \times (\text{No. of rows})$ although the constant of proportionality K varies with the type of applications. This algorithm could be used to find an optimal solution to the linear program in the polynomial time in the worst case. To eliminate x_1 from all equations but the first we subtract from the ith equation c times the first equation for $i = 2, \ldots, n$.

together The linear programming problems and its dual can be put together as a linear complementarity problem.

tolerance For any tolerance $\epsilon_p > 0$ for the primal feasibility, ... The tolerance τ is chosen to reflect the user’s idea of being close enough to zero for this problem.

topic The step 5 is the topic of this chapter. Their application to solving systems of nonlinear equations is the topic of Section 6.5.

touch The woman must try to keep in touch with new books that come out from many publishers.

toward Each solution forms a trajectory (smooth curve) through each point $x^0 \in S$ toward a solution of the LCP.

trajectory Each solution forms a trajectory (smooth curve) through each point $x^0 \in S$ toward a solution of the LCP. The central trajectory constitutes a smooth curve which leads to a solution of the LCP. The central trajectory runs through the interior of the primal-dual feasible region to an optimal solution. The trajectory emanates from the point x^0.

transform In order to be able to solve for x_1, x_2, x_3 sequentially, we eliminate each variable in turn from successive equations, so that (1),(2),(3) are transformed into (1),(2)',(3)'.

The problem can be transformed into an artificial problem of order $2n$ such that ...

treat The constraints treated as inactive are essentially ignored.

treatment It is very useful to consider one example in depth rather than give a brief treatment of several. This book will bring together a comprehensive treatment of these techniques, thus filling an existing gap in the scientific literature.
trivial If the problem has no solution the theorem is trivially true. The sufficiency is trivial; take $m = 2$, then C is convex by (1).

type The primal-dual algorithm of this type is known to work very efficiently on practical problems.

typical Newton’s method is typical of methods for solving nonlinear problems. The pattern of decrease in error given by (1) is typical of Newton’s method.

underlie The idea underlying the method is quite simple.

underlying The idea underlying quasi-Newton methods is to use an approximation to the inverse Hessian in place of the true inverse.

understanding An understanding of the basic approach here should help in the multivariable case. It is important to our understanding to take a more abstract view of what we have done.

unknown Find the real roots of the following nonlinear equation in one unknown.

unlikely It is unlikely that there will ever be such a routine.

use For nonlinear programming problems, a number of different algorithms are in common use, but new methods are being devised at a rapid rate. In particular our method of proof will make use of Gordan’s theorem of the alternative. Lemma 1 is next used to show that ... Using this equation in the objective function, the dual problem becomes the following. We make use of a sliding objective function method similar to the one in [1]. The book may also be used as a reference for practicing engineers, scientists, operational researchers, and other specialists.

useful Such an extension is especially useful when we deal with the LCP associated with a bimatrix game.

utility the utility of q-superlinear convergence is directly related to how many iterations are needed for c_k to become small.

variable Note that each of the variables in x has a corresponding column in A associated with it, problems in just one variable the minimum of a function of one variable

variant The model (a) is an extreme variant of (c).
The total running time has been found to correspond roughly to the equation \(\text{Time} = K \times (\text{No. of rows}) \) although the constant of proportionality \(K \) varies with the type of applications.

It is easy to verify that ...

The LCP can be viewed as a system of piecewise linear equations: The simplex method is viewed from a matrix theoretic approach. This can be viewed as finding a root of the function \(f(x) = x^2 - 3 \). We will discuss the operations required from the point of view of computer implementation of the algorithm.

This more sophisticated viewpoint leads to a compact notational representation, increased insight into the simplex process, and to alternative methods for implementation.

An equivalent way of stating that the mapping is one-to-one is as follows. At the same time the values of the \(m \) basic variables will change in such a way that the solution continues to satisfy the linear equations. It is possible to apply the basic idea of controlling the step length in the way proposed in this paper to exterior point algorithms for such problems. The easiest way to the class of algorithms we will use is to think of solving \(f'(x) = 0 \) by applying the hybrid Newton’s method strategy. This is a convenient way of expressing the solution \(x \), but there are far better ways of computing the solution than forming \(A^{-1} \) explicitly and premultiplying it into \(b \).

Global optimization problems are widespread in the mathematical modeling of real world systems for a very broad range of applications.

In other words, if a new problem were solved with \(b \) changed to \(b + \Delta b \), the change in the optimal value of the objective function would be \(y^T \Delta b \). With the mapping \(u \) we can rewrite the LCP as the system of piecewise linear equations.

The method does not trace the central trajectory within the interior of the feasible domain but rather as an exterior point method.

It would be wonderful if we had a general-purpose computer routine that would tell us “...”.

Conditions (6.3.3) and (6.3.4) are based on work on Armijo (1966). Here the majority of the work lies in calculating a solution \(w \) to ... It is very insightful to consider the space in which various interior point algorithms work. The major work at each iteration of Karmarkar’s method lies in computing the search vector \(d \) defined by (10). The revised simplex method works faster than the standard simplex method.

It is worth emphasizing that ...

The equivalent systems (1), (2) and (3) can be written still in another form as follows.

A function \(g \) is Lipschitz continuous with constant \(\gamma \) in a set \(X \), written \(g \in \text{Lip}_\gamma(X) \), if ...
A narrow neighborhood yields polynomial-time algorithms but is not good for practical purposes. This second use of the lemma yields v, u satisfying...