Conversion Methods for Large Scale SDPs to Exploit Their Structured Sparsity

The 4th Sino-Japanese Optimization Meeting

Tainan, Taiwan

August 27, 2008

Masakazu Kojima

Tokyo Institute of Technology
Contents

1. Introduction
 — Semidefinite Programs (SDPs) and their conversion —

2. Two kinds of sparsities
 2-1. Aggregated sparsity and positive definite matrix completion
 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables

3. Conversion to a c-sparse LMI form SDP with small mat. variables

4. An application to sensor network localization

5. Concluding remarks
Contents

1. Introduction
 — Semidefinite Programs (SDPs) and their conversion —
2. Two kinds of sparsities
 2-1. Aggregated sparsity and positive definite matrix completion
 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
3. Conversion to a c-sparse LMI form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks
Equality standard form SDP:
\[
\min \ A_0 \cdot X \ \text{sub.to} \ A_p \cdot X = b_p \ (p = 1, \ldots, m), \ S^n \ni X \succeq O
\]

Here

\[\ A_p \in S^n \ \text{the linear space of} \ n \times n \ \text{symmetric matrices} \]

with the inner product \[A_p \cdot X = \sum_{i, j} [A_p]_{ij} X_{ij}.\]

\[b_p \in \mathbb{R}, \ X \succeq O \iff X \in S^n \text{is positive semidefinite.}\]

Lots of Applications to Various Problems
- Systems and control theory — Linear Matrix Inequality
- SDP relaxations of combinatorial and nonconvex problems
 - Max cut and max clique problems
 - Quadratic assignment problems
 - Polynomial optimization problems
- Robust optimization
- Quantum chemistry
- Moment problems (applied probability)
- Sensor network localization problem — later
- . . .
Equality standard form SDP:
\[
\min A_0 \cdot X \text{ sub.to } A_p \cdot X = b_p \ (p = 1, \ldots, m), \quad S^n \ni X \succeq O
\]

SDP can be large-scale easily
- \(n \times n \) mat. variable \(X \) involves \(n(n+1)/2 \) real variables;
 \(n = 2000 \Rightarrow n(n+1)/2 \approx 2 \text{ million} \)
- \(m \) linear equality constraints or \(m \ A_p \)'s \(\in S^n \)

◊ How can we solve a larger scale SDP?

(a) Use more powerful computer system such as clusters and grids of computers — parallel computation.
(b) Develop new numerical methods for SDPs.
(c) Improve primal-dual interior-point methods.
(d) Convert a large sparse SDP to an SDP which existing pdipms can solve efficiently:
 - multiple but small size mat. variables.
 - a sparse Schur complement mat. (a coef. mat. of a sys. of equations solved at \(\forall \) iteration of the pdipm).
An SDP example — Conversion makes a critical difference

\[
\begin{align*}
\text{min} & \quad \sum_{p=1}^{m} x_p + I \cdot X \\
\text{sub.to} & \quad a_p x_p + A_p \cdot X = 2, \ x_p \geq 0 \ (p = 1, \ldots, m), \ X \succeq O.
\end{align*}
\]

Here \(a_p \in (0, 1) \) and \(A_p \in S^k \) are generated randomly.

<table>
<thead>
<tr>
<th>m</th>
<th>k</th>
<th>SeDuMi cpu time in sec.</th>
<th>conv.+SeDuMi cpu time in sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>29.6</td>
<td>4.3</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>360.4</td>
<td>10.3</td>
</tr>
<tr>
<td>4000</td>
<td>10</td>
<td></td>
<td>20.9</td>
</tr>
</tbody>
</table>

\(x_p \) is an LP variable which appears in a single equality constraint.

\(X \) is an SDP variable matrix which appears in all equality constraints, and its size is small.

How can we formulate and exploit more general structured sparsity?
Outline of the conversion

<table>
<thead>
<tr>
<th>structured sparsity used</th>
<th>a large scale and structured sparse SDP</th>
<th>technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregated sparsity</td>
<td>⇓</td>
<td>positive definite mat. completion</td>
</tr>
<tr>
<td>an SDP with small SDP cones and shared variables among SDP cones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>correlative sparsity</td>
<td>⇓</td>
<td>conversion to LMI form SDP or conversion to Equality form SDP</td>
</tr>
<tr>
<td>a c-sparse SDP with small mat. variables (i.e., small SDP cones)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction
 — Semidefinite Programs (SDPs) and their conversion —
2. Two Kinds of Sparsities
 2-1. Aggregated sparsity and positive definite matrix completion (Fukuda et al. ’01, Nakata et al. ’03)
 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion to a c-sparse LMI form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks
Equality standard form SDP:
\[
\min A_0 \bullet X \text{ sub.to } A_p \bullet X = b_p \ (p = 1, \ldots, m), \ S^n \ni X \succeq O
\]

\(A_* : n \times n \) aggregated sparsity pattern mat.
\[
[A_*]_{ij} = \begin{cases}
\star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \ldots, m, \\
0 & \text{otherwise}
\end{cases}
\]

SDP : a-sparse if \(A_* \) allows a sparse Cholesky factorization

Two typical cases

1: bandwidth along diagonal

\[
A_* = \begin{pmatrix}
\star & \star & 0 & 0 & 0 \\
\star & \star & \star & 0 & 0 \\
0 & \star & \star & \star & 0 \\
0 & 0 & \star & \star & \star \\
0 & 0 & 0 & \star & \star
\end{pmatrix}
\]

2 : arrow \(\searrow \)

\[
A_* = \begin{pmatrix}
\star & 0 & 0 & 0 & \star \\
0 & \star & 0 & 0 & \star \\
0 & 0 & \star & 0 & \star \\
0 & 0 & 0 & \star & \star \\
\star & \star & \star & \star & \star
\end{pmatrix}
\]

\(X \) : fully dense, so standard \textit{pdipms} can not effectively utilize this type of sparsity \(\Rightarrow \) pos.def.mat.completion
Equality standard form SDP:
\[
\min \ A_0 \cdot X \ \text{sub.to} \ A_p \cdot X = b_p \ (p = 1, \ldots, m), \ S^n \ni X \succeq O
\]

\(A_* : n \times n \) aggregated sparsity pattern mat.

\[\left[A_*\right]_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \ldots, m, \\ 0 & \text{otherwise} \end{cases} \]

SDP : a-sparse if \(A_*\) allows a sparse Cholesky factorization

\(G(N, E) : \) the asp graph, an undirected graph with
\(N = \{1, \ldots, n\}, \ E = \{(i, j) : [A_*]_{ij} = \star \text{ and } i < j\}. \)

\(\Downarrow \)

\(G(N, \overline{E}) : \) a chordal extension of \(G(N, E).\)

\(C_1, \ldots, C_\ell \subset N : \) the family of maximal cliques of \(G(N, \overline{E}).\)

SDP \equiv \) an SDP with shared variables among small SDP cones:

\[
\min \ \sum_{(i,j)\in\widetilde{E}} [A_0]_{ij}X_{ij} \\
\text{sub.to} \ \sum_{(i,j)\in\widetilde{E}} [A_p]_{ij}X_{ij} = b_p \ (\forall p), \ X(C_r) \succeq O \ (r = 1, \ldots, \ell),
\]

where \(X(C_r) : \) the submatrix of \(X\) consisting of \(X_{ij} \ (i, j \in C_r).\)

Here \(\widetilde{E} = \{(i, j) : (i, j), (j, i) \in \overline{E} \text{ or } i = j\} \implies \text{Section 3}.\)
Equality standard form SDP:
\[
\min A_0 \bullet X \quad \text{sub.to} \quad A_p \bullet X = b_p \quad (p = 1, \ldots, m), \quad S^n \ni X \succeq O
\]

\(A_*: n \times n\) aggregated sparsity pattern mat.
\[
[A_*]_{ij} = \begin{cases}
\star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \ldots, m, \\
0 & \text{otherwise}
\end{cases}
\]

SDP: \textbf{a-sparse} if \(A_*\) allows a sparse Cholesky factorization

\[
\begin{pmatrix}
\star & \star & 0 & 0 & 0 \\
\star & \star & \star & \star & 0 \\
0 & \star & \star & 0 & \star \\
0 & \star & 0 & \star & \star \\
0 & 0 & \star & \star & \star \\
\end{pmatrix}
\]

\[
G(N, E) \downarrow \quad \text{chordal max. cliques}
\]

\[
\tilde{E} = \{\star\text{'s \& 0's}\}
\]

\[
\min \sum_{(i,j) \in \tilde{E}} [A_0]_{ij} X_{ij} \quad \text{sub.to} \quad \sum_{(i,j) \in \tilde{E}} [A_p]_{ij} X_{ij} = b_p,
\]

\[
\begin{pmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{pmatrix}, \quad \begin{pmatrix}
X_{22} & X_{23} & X_{24} \\
X_{32} & X_{33} & X_{34} \\
X_{42} & X_{43} & X_{44}
\end{pmatrix}, \quad \begin{pmatrix}
X_{33} & X_{34} & X_{35} \\
X_{43} & X_{44} & X_{45} \\
X_{53} & X_{54} & X_{55}
\end{pmatrix} \succeq O
\]
Equality standard form SDP:
\[
\min \ A_0 \cdot X \ \text{sub.to} \ A_p \cdot X = b_p \ (p = 1, \ldots, m) , \ S^n \ni X \succeq O
\]

As an example: \(\downarrow \) aggregated sparsity

\[
\min \ \sum_{(i,j) \in \tilde{E}} \ [A_0]_{ij} X_{ij} \ \text{sub.to} \ \sum_{(i,j) \in \tilde{E}} \ [A_p]_{ij} X_{ij} = b_p \ \text{and} \ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} , \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44} \end{pmatrix} , \begin{pmatrix} X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55} \end{pmatrix} \succeq O
\]

(an SDP with smaller SDP cones and shared variables) \(\implies \)

Conversion into a standard form SDP to apply IPM — 2 ways

Primal form SDP with small mat. variables:

\[
\min \ "\text{linear obj. in } Y_{ij}^r \text{" sub.to } "\text{linear eq. in } Y_{ij}^r \text{" and} \ \\
\begin{pmatrix} Y_{11}^{1} & Y_{12}^{1} \\ Y_{21}^{1} & Y_{22}^{1} \end{pmatrix} , \begin{pmatrix} Y_{11}^{2} & Y_{12}^{2} & Y_{13}^{2} \\ Y_{21}^{2} & Y_{22}^{2} & Y_{23}^{2} \\ Y_{31}^{2} & Y_{32}^{2} & Y_{33}^{2} \end{pmatrix} , \begin{pmatrix} Y_{11}^{3} & Y_{12}^{3} & Y_{13}^{3} \\ Y_{21}^{3} & Y_{22}^{3} & Y_{23}^{3} \\ Y_{31}^{3} & Y_{32}^{3} & Y_{33}^{3} \end{pmatrix} \succeq O, \\
Y_{22}^{1} = Y_{11}^{2}, \ Y_{22}^{2} = Y_{11}^{3}, \ Y_{23}^{2} = Y_{12}^{3}, \ Y_{33}^{2} = Y_{22}^{3}.
\]
Equality standard form SDP:
\[\min A_0 \bullet X \ \text{sub.to} \ A_p \bullet X = b_p \ (p = 1, \ldots, m), \ S^n \ni X \succeq O \]

As an example: \[\downarrow\] aggregated sparsity

\[\min \sum_{(i,j) \in \tilde{E}} [A_0]_{ij} X_{ij} \ \text{sub.to} \ \sum_{(i,j) \in \tilde{E}} [A_p]_{ij} X_{ij} = b_p \ \text{and} \]

\[
\begin{pmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{pmatrix},
\begin{pmatrix}
X_{22} & X_{23} & X_{24} \\
X_{32} & X_{33} & X_{34} \\
X_{42} & X_{43} & X_{44}
\end{pmatrix},
\begin{pmatrix}
X_{33} & X_{34} & X_{35} \\
X_{43} & X_{44} & X_{45} \\
X_{53} & X_{54} & X_{55}
\end{pmatrix}
\succeq O
\]

(an SDP with smaller SDP cones and shared variables) \[\Rightarrow\]
Conversion into a standard form SDP to apply IPM — 2 ways

LMI form SDP with small mat. variables — later
Contents

1. Introduction
 — Semidefinite Programs (SDPs) and their conversion —

2. Two kinds of sparsities
 2-1. Aggregated sparsity and positive definite matrix completion
 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables

3. Conversion to a c-sparse LMI form SDP with small mat. variables

4. An application to sensor network localization

5. Concluding remarks
SDP with small matrix variables:

\[
\begin{align*}
\text{min} & \quad \sum_{r=1}^{\ell} A_{0r} \bullet X_r \\
\text{sub.to} & \quad \sum_{r=1}^{\ell} A_{pr} \bullet X_r = b_p \quad (p = 1, \ldots, m), \quad X_r \succeq O \quad (\forall r)
\end{align*}
\]

\[
\downarrow \quad A_{p\diamond} = \text{diag} \left(A_{p1}, \ldots, A_{p\ell} \right), \quad X_{\diamond} = \text{diag} \left(X_1, \ldots, X_\ell \right),
\]

\[
A_{p\diamond} \bullet X_{\diamond} = \sum_{r=1}^{\ell} A_{pr} \bullet X_r.
\]

SDP: \(\text{min} \ A_{0\diamond} \bullet X_{\diamond} \) sub.to \(A_{p\diamond} \bullet X_{\diamond} = b_p \quad (\forall p), \quad X_{\diamond} \succeq O \)

\(m \times m \quad R_* : \) correlative sparsity pattern (csp) mat.

\[
[R_*]_{pq} = \begin{cases}
0 & \text{if } A_{p\diamond} \text{ and } A_{q\diamond} \text{ are bw-comp}, \\
\ast & \text{otherwise.}
\end{cases}
\]

\(A_{p\diamond} \text{ and } A_{q\diamond} : \) block-wise complementary

\[
\uparrow \quad A_{pr} = O \text{ or } A_{qr} = O \text{ for every } r = 1, \ldots, \ell;
\]
SDP with small matrix variables:

\[
\text{min } \sum_{r=1}^{\ell} A_{0r} \bullet X_r
\]

sub.to \(\sum_{r=1}^{\ell} A_{pr} \bullet X_r = b_p \) (\(p = 1, \ldots, m \)), \(X_r \succeq O \) (\(\forall r \))

\[
A_{p\diamond} = \text{diag} \left(A_{p1}, \ldots, A_{p\ell} \right), \quad X_{\diamond} = \text{diag} \left(X_1, \ldots, X_\ell \right),
\]

\[
A_{p\diamond} \bullet X_{\diamond} = \sum_{r=1}^{\ell} A_{pr} \bullet X_r.
\]

SDP:

\[
\text{min } A_{0\diamond} \bullet X_{\diamond} \text{ sub.to } A_{p\diamond} \bullet X_{\diamond} = b_p \ (\forall p), \quad X_{\diamond} \succeq O
\]

\(m \times m \ R_* \) : correlative sparsity pattern (csp) mat.

\[
[R_*]_{pq} = \begin{cases} 0 & \text{if } A_{p\diamond} \text{ and } A_{q\diamond} \text{ are bw-comp,} \\ * & \text{otherwise.} \end{cases}
\]

\[
A_{1\diamond} = \text{diag} \left(A_{11}, O, O, O \right)
\]

\[
A_{2\diamond} = \text{diag} \left(O, A_{22}, O, O \right)
\]

\[
A_{3\diamond} = \text{diag} \left(O, O, A_{33}, O \right)
\]

\[
A_{4\diamond} = \text{diag} \left(A_{41}, A_{42}, A_{43}, A_{44} \right)
\]

\[
R_* = \begin{pmatrix} * & 0 & 0 & * \\ 0 & * & 0 & * \\ 0 & 0 & * & * \\ * & * & * & * \end{pmatrix}
\]

\(\exists \) sparse Cholesky factorization
SDP with small matrix variables:

\[
\begin{align*}
 \text{min} & \quad \sum_{r=1}^{\ell} A_{0r} \bullet X_r \\
 \text{sub.to} & \quad \sum_{r=1}^{\ell} A_{pr} \bullet X_r = b_p \ (p = 1, \ldots, m), \quad X_r \succeq O \ (\forall r)
\end{align*}
\]

\[
A_{p\diamond} = \text{diag} \left(A_{p1}, \ldots, A_{p\ell} \right), \quad X_\diamond = \text{diag} \left(X_1, \ldots, X_\ell \right), \quad A_{p\diamond} \bullet X_\diamond = \sum_{r=1}^{\ell} A_{pr} \bullet X_r.
\]

SDP: \(\text{min } A_{0\diamond} \bullet X_\diamond \text{ sub.to } A_{p\diamond} \bullet X_\diamond = b_p \ (\forall p), \quad X_\diamond \succeq O\)

\(m \times m \ R_* : \text{correlative sparsity pattern (csp) mat.}\)

\[
[R_*]_{pq} = \begin{cases}
0 & \text{if } A_{p\diamond} \text{ and } A_{q\diamond} \text{ are bw-comp,} \\
* & \text{otherwise.}
\end{cases}
\]

\(\bullet R_* = \text{the sparsity pattern of the Schur complement mat.} = \)
\(\text{a coef. mat. of equations solved at } \forall \text{ iteration of the pdipm by the Cholesky fact.}\)

SDP : c-sparse if \(R_*\) allows a sparse Cholesky factorization

c-sparse SDP with small mat. variables — target of conversion
Outline of the conversion

<table>
<thead>
<tr>
<th>Structured Sparsity Used</th>
<th>A Large Scale and Structured Sparse SDP</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregated Sparsity</td>
<td>↓</td>
<td>Positive Definite Mat. Completion</td>
</tr>
<tr>
<td></td>
<td>An SDP with small SDP cones and shared variables among SDP cones</td>
<td></td>
</tr>
<tr>
<td>Correlative Sparsity</td>
<td>↓</td>
<td>Conversion to LMI Form SDP or Conversion to Equality Form SDP</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A c-sparse SDP with small mat. variables (i.e., small SDP cones)</td>
<td></td>
</tr>
</tbody>
</table>

\[\quad \]
Contents

1. Introduction
 — Semidefinite Programs (SDPs) and their conversion —
2. Two kinds of sparsities
 2-1. Aggregated sparsity and positive definite matrix completion
 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
3. Conversion to a c-sparse LMI form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks
SDP with shared variables among SDP cones

\[
\begin{align*}
\min & \sum_{(i,j) \in \widetilde{E}} [A_0]_{ij} X_{ij} \quad \text{sub.to} \quad \sum_{(i,j) \in \widetilde{E}} [A_p]_{ij} X_{ij} = b_p \ (p = 1, \ldots, m), \\
& \sum_{(i,j) \in \widetilde{E}} X(C_r) \succeq O \ (r = 1, \ldots, \ell), \\
C_1, \ldots, C_r : \text{the max. cliques of a chordal graph } G(N, \overline{E})
\end{align*}
\]

\[\widetilde{E} = \{(i, j) : (i, j), (j, i) \in \overline{E} \text{ or } i = j\}.\]

Represent each \(X(C_r)\) as

\[
X(C_r) = \sum_{i,j \in C_r, i \leq j} E_{ij}(C_r) X_{ij},
\]

where \(E_{ij}(C_r)\) : a sym. mat. with 1 at some one or two elements and 0 elsewhere. Then, a \(c\)-sparse LMI form SDP having eq. const.

\[
\begin{align*}
\min & \sum_{(i,j) \in \widetilde{E}} [A_0]_{ij} X_{ij} \quad \text{sub.to} \quad \sum_{(i,j) \in \widetilde{E}} [A_p]_{ij} X_{ij} = b_p \ (\forall p), \\
& \sum_{i,j \in C_r, i \leq j} E_{ij}(C_r) X_{ij} \succeq O \ (\forall r).
\end{align*}
\]
SDP with shared variables among SDP cones

\[
\begin{align*}
\min & \sum_{(i,j) \in \tilde{E}} [A_0]_{ij} X_{ij} \quad \text{sub.to} \quad \sum_{(i,j) \in \tilde{E}} [A_p]_{ij} X_{ij} = b_p \quad (p = 1, \ldots, m), \\
& X(C_r) \succeq \mathbf{0} \quad (r = 1, \ldots, \ell), \\
C_1, \ldots, C_r : & \text{the max. cliques of a chordal graph } G(N, \overline{E}) \\
\tilde{E} & = \{(i, j) : (i, j), (j, i) \in \overline{E} \text{ or } i = j\}.
\end{align*}
\]

\(n = 100, m = 98, C_r = \{r, 99, 100\} \quad (1 \leq r \leq 98)\).

\[A_r = \begin{bmatrix}
 & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\end{bmatrix}\]

\[A_* = \begin{bmatrix}
 & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\end{bmatrix}\]

\[R_* \text{ of LMI form SDP} = \]

\[\begin{bmatrix}
 & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\end{bmatrix}\]
Contents

1. Introduction
 — Semidefinite Programs (SDPs) and their conversion —
2. Two kinds of sparsities
 2-1. Aggregated sparsity and positive definite matrix completion
 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
3. Conversion to a c-sparse LMI form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks
Sensor network localization problem: Let $s = 2$ or 3.

- $\mathbf{x}^p \in \mathbb{R}^s$: unknown location of sensors ($p = 1, 2, \ldots, m$),
- $\mathbf{x}^r = \mathbf{a}^r \in \mathbb{R}^s$: known location of anchors ($r = m + 1, \ldots, n$),
- $d_{pq} = \|\mathbf{x}^p - \mathbf{x}^q\| + \epsilon_{pq}$ — given for $(p, q) \in \mathcal{N}$,
- $\mathcal{N} = \{(p, q) : \|\mathbf{x}^p - \mathbf{x}^q\| \leq \rho = \text{a given radio range}\}$

Here ϵ_{pq} denotes a noise.

$m = 5$, $n = 9$.
1, \ldots, 5: sensors
6, 7, 8, 9: anchors

Anchors’ positions are fixed.
A distance is given for \forall edge.
Compute locations of sensors.

\Rightarrow Some nonconvex QOPs
- SDP relaxation +? — FSDP by Biswas-Ye ’06, ESDP by Wang et al ’07, ... for $s = 2$.
- SOCP relaxation — Tseng ’07 for $s = 2$.
- ...

...
Numerical results on 4 methods (a), (b), (c) and (d) applied to a sensor network localization problem with

\[m = \text{the number of sensors dist. randomly in } [0, 1]^2, \]

4 anchors located at the corner of \([0, 1]^2\),
\[\rho = \text{radio distance} = 0.1, \text{ no noise}. \]

(a) FSDP
(b) FSDP + Conv. to LMI form SDP, as strong as (a)
(c) FSDP + Conv. to equality form SDP as strong as (a)
(d) ESDP — a further relaxation of FSDP, weaker than (a);

<table>
<thead>
<tr>
<th>(m)</th>
<th>SeDuMi cpu time in second</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>500</td>
<td>389.1</td>
</tr>
<tr>
<td>1000</td>
<td>3345.2</td>
</tr>
<tr>
<td>2000</td>
<td>111.1</td>
</tr>
<tr>
<td>4000</td>
<td>182.1</td>
</tr>
</tbody>
</table>

SeDuMi parameters
\[\text{pars.free}=0; \]
\[.\text{eps}=1.0\text{e}-5 \]
\[\Rightarrow \text{a-sparsity, c-sparsity} \]
\[\text{in (a) and (b)} \]
A sensor network localization problem with 1000 sensors dist. randomly in $[0, 1]^2$, 4 anchors located at the corner of $[0, 1]^2$, $\rho = \text{radio distance} = 0.1$, no noise

(b) FSDP + Conversion to an LMI form SDP
A Cholesky fact. of the a-sparsity pattern matrix A_* with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye ’06) (b) FSDP + Conversion to an LMI form SDP

1002×1002, $nz = 7062$
$\text{nz density} = 0.014$

7381×7381, $nz = 37,701$
$\text{nz density} = 0.0014$
A Cholesky fact. of the c-sparsity pattern matrix R_* (= the Schur comp. matrix) with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye ’06) \hspace{1cm} (b) FSDP + Conversion to an LMI form SDP

3686 × 3686, nz = 6,795,141 \hspace{1cm} 8916 × 8916, nz = 805,183

nz density = 1.00 \hspace{1cm} nz density = 0.020

3345.2 second \hspace{1cm} 60.4 second
1. Introduction
 — Semidefinite Programs (SDPs) and their conversion —
2. Two kinds of sparsities
 2-1. Aggregated sparsity and positive definite matrix completion
 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
3. Conversion to a c-sparse LMI form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks
1. Conversion of a large scale SDP into an SDP having small mat. variables and a sparse Schur complement mat. by exploiting the structured sparsity,
 - aggregated sparsity,
 - correlative sparsity.

2. Two different methods:
 - Conversion to an LMI form SDP.
 - Conversion to an equality form SDP

3. An application to sensor network localization.
 ⇒ S. Kim’s talk on Aug. 30.

Thank you!