Dealing with Infinite Loops, Underestimation, and Overestimation of Depth-First Proof-Number Search

Akihiro Kishimoto
Department of Mathematical and Computing Sciences
Graduate School of Information Science and Engineering
Tokyo Institute of Technology
PRESTO, Japan Science and Technology Agency, Japan
Email:kishimoto@is.titech.ac.jp

Abstract

Depth-first proof-number search (df-pn) is powerful AND/OR tree search to solve positions in games. However, df-pn has a notorious problem of infinite loops when applied to domains with repetitions. Df-pn(r) cures it by ignoring proof and disproof numbers that may lead to infinite loops. This paper points out that df-pn(r) has a serious issue of underestimating proof and disproof numbers, while it also suffers from the overestimation problem occurring in directed acyclic graph. It then presents two practical solutions to these problems. While bypassing infinite loops, the threshold controlling algorithm (TCA) solves the underestimation problem by increasing the thresholds of df-pn. The source node detection algorithm (SNDA) detects the cause of overestimation and modifies the computation of proof and disproof numbers. Both TCA and SNDA are implemented on top of df-pn to solve tsume-shogi (checkmating problem in Japanese chess). Results show that df-pn with TCA and SNDA is far superior to df-pn(r). Our tsume-shogi solver is able to solve several difficult positions previously unsolved by any other solvers.

Introduction

Developing efficient AND/OR tree search has been a fundamental topic in AI, because solving complex AND/OR trees is required for problem-solving procedures. Such an example is to find a winning way from a given position in games. Research in solving tsume-shogi (checkmating problem in Japanese chess) has produced a variety of powerful domain-independent AND/OR tree search techniques (Seo, Iida, and Uiterwijk 2001; Nagai 2002). In particular, successful ideas behind depth-first proof-number search (df-pn) (Nagai 2002) have been adapted to other games, including checkers (Schaeffer et al. 2007), and the life and death problem in the game of Go (Kishimoto and Müller 2005).

Df-pn is an enhanced reformulation of best-first proof-number search (PNS) (Allis, van der Meulen, and van den Herik 1994) in a depth-first manner. A leaf node to expand next is selected by Allis’ proof and disproof numbers, an estimated difficulty to find a win or loss. The df-pn search is controlled by the thresholds of proof and disproof numbers. If the search space is a tree, df-pn is equivalent to PNS with preserving good properties of reducing memory requirement and interior node re-expansions. However, the search space of many games is directed acyclic graph (DAG), or even directed cyclic graph (DCG). While df-pn is still a pragmatic choice, several issues must be addressed.

The infinite loop problem is an essential problem causing df-pn never to solve a position even in infinite time. Although df-pn(r) (Kishimoto 2005) cures this issue, we address that df-pn(r) suffers from underestimating proof and disproof numbers. The overestimation problem is caused by counting proof and disproof numbers of the same node many times, and has been addressed previously in (Schijf 1993; Müller 2003; Seo, Iida, and Uiterwijk 2001). Both overestimation and underestimation delay searching promising nodes and increase the search effort by a large margin.

This paper presents techniques to handle the three aforementioned problems. Its contributions are synthesis of df-pn with two novel methods and a demonstration of the promise of our approach in solving difficult tsume-shogi instances.

The rest of this paper is organized as: Starting with a description of tsume-shogi, we review related work. Our new algorithms are then described, followed by experimental results, and conclusions with outlines of further work.

Tsume-Shogi as a Testbed of AI Research

Shogi (Japanese chess) is a game with 15 million players and the history of over 400 years. Not only there are a few hundred human professional players but also an annual world computer shogi championship has been held for 20 years to determine the best of over 40 participating programs\(^1\).

As in chess the goal of shogi is to capture the king. However, unlike in chess, captured pieces can be later reused by dropping one of them on the board (Hosking 1996). Because of this rule, shogi has a larger average branching factor than chess \(80 - 100 \text{ versus } 35\). Developing strong shogi programs has been an important subject of game-playing (Schaeffer 2001; Iida, Sakuta, and Rollason 2002).

Tsume-shogi is the checkmating problem where the attacker checks the king and the defender escapes. The attacker is the first player. To solve tsume-shogi, the attacker must find at least one winning move, while all the moves responded by the defender must be proven to be check mate.

\(^1\)http://www.computer-shogi.org/index_e.html
Tsume-shogi is an ideal domain to investigate ideas on AND/OR tree search, because there are many difficult instances composed by tsume-shogi creators for hundreds of years. Searching over a thousand of depth (ply) is often required to find solutions. Besides, specialized tsume-shogi search engines are incorporated into most shogi programs, because checkmating attacks plays a crucial role in shogi.

Related Work and Problem Descriptions

Depth-First Proof-Number Search

Let a proof be a win for the attacker (OR node) and a disproof be a win for the defender (AND node). Df-pn (Nagai 2002) leverages proof and disproof numbers pn(n) and dn(n) (Allis, van der Meulen, and van den Herik 1994) to estimate a difficulty of finding a proof or disproof of node n.

pn(n) is the minimum number of leaf nodes that must be proven to find a proof for n in a currently generated tree. **dn(n)** is the minimum number of leaf nodes to be disproven to find a disproof for n. pn(n) = 0 and dn(n) = ∞ are set for proven terminal node n, while pn(n) = ∞ and dn(n) = 0 for disproven terminal node. pn(n) = dn(n) = 1 is set for unproven leaf. Let n₁, n₂, ..., nₖ be children of interior node n. Since only one proven child suffices to prove an AND node, while all children must be proven to prove an AND node (and vice versa for disproof). pn(n) and dn(n) are:

- For OR node n, \(pn(n) = \min_{i=1,...,k} pn(n_i) \) and \(dn(n) = \sum_{i=1}^{k} dn(n_i) \).
- For AND node n, \(pn(n) = \sum_{i=1}^{k} pn(n_i) \) and \(dn(n) = \min_{i=1,...,k} dn(n_i) \).

As in PNS, df-pn expands a leaf node (called a most-promising node) reached from the root by selecting a child with the smallest proof number at each OR node, and a child with the smallest disproof number at each AND Node. Unlike PNS, df-pn does so by using two thresholds: \(th_{pn}(n) \) for proof numbers and \(th_{dn}(n) \) for disproof numbers.

At the root r, \(th_{pn}(r) \) and \(th_{dn}(r) \) are initialized to ∞. Whenever df-pn reaches n from its parent p, or backtracks to n after expanding n’s descendants, it computes \(pn(n) \) and \(dn(n) \) by using proof and disproof numbers of n’s children. \(pn(n) \) and \(dn(n) \) are cached in the transposition table for reuse. If \(pn(n) \geq th_{pn}(n) \) or \(dn(n) \geq th_{dn}(n) \), df-pn backtracks to p. Otherwise, it selects a child \(n_1 \) with the smallest (dis)proof number at OR (AND) node n. Let \(n_2 \) be a child with the second smallest (dis)proof number at OR (AND) node n. Df-pn searches \(n_1 \) with the following thresholds indicating the condition in which either \(n_1 \) or n is no longer on the path to reach a most-promising node:

- For OR node n, \(th_{pn}(n_1) = \min(th_{pn}(n), pn(n_2) + 1) \) and \(th_{dn}(n_1) = th_{dn}(n) - (dn(n) + n_1.n) \).
- For AND node n, \(th_{pn}(n_1) = th_{pn}(n) - pn(n) + pn(n_1) \) and \(th_{dn}(n_1) = \min(th_{dn}(n), dn(n_2) + 1) \).

Df-pn continues these procedures until finding a solution.

The Infinite Loop Problem and Df-pn(r)

When standard df-pn is applied to DCG, it has a fundamental problem of causing infinite loops. Although (Nagai 2002) does not mention the existence of this problem², (Kishimoto 2005) confirms it occurs in many domains including Go, checkers, and shogi. Besides, (Kishimoto and Müller 2008) prove that df-pn loops forever when searching a DCG in Figure 1. Df-pn must expand P to prove A. However, this never occurs, because df-pn keeps selecting two paths (a) A → C → F → H → L → N and (b) A → C → G → J → O, and always satisfies \(th_{dn}(N) \leq \min(th_{dn}(O)) \) via (a) and \(th_{dn}(O) \leq \min(th_{dn}(O) = \min(\ldots)) \) via (b).

Df-pn(r) is a practical method to handle infinite loops (Kishimoto and Müller 2003; Kishimoto 2005). \(pn(n) \) for OR node and \(dn(n) \) for AND node are computed in a standard way. Because adding (dis)proof numbers from an ancestor to a node is intuitively bad, df-pn(r) detects this case by computing minimal distance \(md(n) \), the length of the shortest path from the root to node n (see \(md \) in Figure 1). Df-pn(r) classifies n’s children c into two types: c is normal if \(md(n) < md(c) \). Otherwise c is old. If at least one unproven normal child exists, all old children are ignored to compute \(dn(n) \) for OR node n. Otherwise, \(dn(n) \) is set to the maximum of disproof numbers of all old children. \(pn(n) \) for AND node n is analogously treated.

In Figure 1, df-pn(r) computes \(dn(O) = \min(\ldots) \) for unproven P and H, because H is old and P is normal at O.

The Underestimation and Overestimation Problems

Although (Kishimoto 2005) shows that df-pn(r) is effective in Go and checkers, we point out that it often underestimates (dis)proof numbers, as shown in the left example in Figure 2. Df-pn(r) computes \(dn(D) = \min(\ldots) \) for unproven E and F, because F is D’s old child. However, more reasonable is \(mn(D) = \min(\ldots) \), because both E and F must be disproven to disprove D.

Moreover, both df-pn and df-pn(r) overestimate proof and disproof numbers. In the right example in Figure 2, the

²Despite our best effort, it is not possible to compare our solution with Nagai’s “solution”. Nagai also writes several Japanese articles on tsume-shogi. However, the infinite loop problem is never described, although it would be impossible to develop a strong solver without handling it.

Figure 1: An example showing that df-pn loops forever, adapted from (Kishimoto and Müller 2008)
true value of $d_n(G)$ should be equal to $d_n(J)$. However, computing $d_n(G)$ counts $d_n(J)$ twice, derived by $d_n(G) = d_n(H) + d_n(J) = d_n(J) + d_n(J) = 2 \times d_n(J)$.

Previous Work on the Overestimation Problem

The overestimation problem occurs only when computing p_n for AND node and d_n for OR node. In the other cases, $p_n(n)$ and $d_n(n)$ are computed in a standard way.

Since overestimation also occurs in PNS, a few solutions are presented but are specific to PNS (Allis 1994; Schijf, Allis, and Uiterwijk 1994; Müller 2003). An exact method in (Schijf 1993) is unfortunately impractical even for tic-tac-toe, due to high computational overhead.

In Figure 2, let us call J a destination node, which has more than one parent, and G a source node of destination node n_d, which is n_d’s first ancestor merged into by tracing back different paths starting at n_d. (Nagai 2002) presents a method to detect a source node n_s and takes the maximum of (dis)proof numbers of n_s’s children to compute $p_n(n_s)$ (or $d_n(n_s)$), instead of summing up them. In his method, each transposition table (TT) entry of node n has one pointer to one parent p. When df-pn reaches n via p, p is saved in n’s TT entry. Then, if df-pn reaches n via another parent q, it indicates that n is a destination node and there may exist a source node n_s that counts $p_n(n)$ or $d_n(n)$ more than once. n_s is detected by checking if one of the ancestors obtained by recursively traversing pointers from n in the TT is merged into n_s, which is also on the path of the current df-pn search.

In Figure 2, assume that J points to H and H points to G in the TT, because df-pn previously reaches J via $G \rightarrow H \rightarrow J$. Then, if df-pn reaches J via $G \rightarrow I \rightarrow J$, Nagai’s method detects that J has a different parent I, which is not stored in J’s TT entry (i.e., H). G is detected as a source node by traversing J by H and then H to G in the TT, and G is on path $G \rightarrow I \rightarrow J$. Nagai’s method then sets $p_n(G) = \max(d_n(H), d_n(I)) = d_n(J)$ accurately. However, this approach underestimates $d_n(A)$, because it considers A to be a source and computes $d_n(A) = \max(d_n(B), d_n(C), d_n(F)) = \max(d_n(B), d_n(E) + d_n(F), d_n(F)) = \max(d_n(B), d_n(E) + d_n(F))$. The true value of $d_n(A)$ should be $d_n(B) + d_n(E) + d_n(F)$.

Let b be the number of unproven children and n_1, \cdots, n_k be children of node n. Weak proof-number search (WPNS) (Ueda et al. 2008), which is a refinement to (Okabe 2005), modifies $p_n(n)$ and $d_n(n)$ in the following way:

- For OR node n, $d_n(n) = \max_{i=1,\ldots,k} d_n(n_i) + b - 1$.
- For AND node n, $p_n(n) = \max_{i=1,\ldots,k} p_n(n_i) + b - 1$.

WPNS avoids counting $d_n(J)$ twice to compute $d_n(G)$ in Figure 2, at the price of slightly overestimating $d_n(G)$ to $d_n(J) + 1$ and reusing the proof and disproof numbers in the TT less frequently than df-pn. Also, WPNS underestimates proof and disproof numbers, because most of the (dis)proof numbers at interior nodes are assumed to be 1.

Our Solutions

This section describes two practical algorithms to overcome the issues of previous approaches.

The Threshold Controlling Algorithm

Df-pn(r) tries to break the termination condition at node n that has an unproven old child by decreasing $p_n(n)$ or $d_n(n)$. This way, it reaches a leaf, avoiding infinite loops. In contrast, the Threshold Controlling Algorithm (TCA), breaks the termination condition by increasing the thresholds at n. This way, TCA tries to reach a leaf to expand.

The underestimation problem of df-pn(r) is caused by ignoring old children determined by $md(n)$, although $md(n)$ does not always indicate the existence of infinite loops. TCA computes $p_n(n)$ and $d_n(n)$ in a standard way. TCA therefore cures underestimation in Figure 2. $d_n(D) = d_n(E) + d_n(F)$ in TCA while $d_n(D) = d_n(E)$ in df-pn(r).

To overcome infinite loops, TCA leverages the minimal distance as a criterion of increasing thresholds. When TCA enters n and computes $p_n(n)$ and $d_n(n)$ by retrieving the TT entries of n’s children, it checks if any unproven child of n is old. If n has no unproven old child, the standard df-pn procedure is performed (this will be modified later). Otherwise, TCA resets the thresholds to $\max(\mathit{th}_{pn}(n), p_n(n) + 1)$ and $\max(\mathit{th}_{dn}(n), d_n(n) + 1)$. With the increased thresholds, $p_n(n) < \mathit{th}_{pn}(n)$ and $d_n(n) < \mathit{th}_{dn}(n)$ hold. TCA therefore expands n and selects the best child $n_1 \ldots i.e., one with the smallest proof number at OR node and one with smallest disproof number at AND node. TCA adjusts $\mathit{th}_{pn}(n_1)$ and $\mathit{th}_{dn}(n_1)$ in a standard way except that they are based on the increased thresholds.

Assume that TCA increases $\mathit{th}_{pn}(n)$ and $\mathit{th}_{dn}(n)$ at node n that has an unproven old child, selects the best child c at n, and enters c. $\mathit{th}_{pn}(c)$ and $\mathit{th}_{dn}(c)$ are also increased even if c has only unproven normal children. This is to avoid infinite loops caused by the case where TCA immediately backtracks to n from c by satisfying the termination condition at c. TCA continues the procedure of increasing thresholds until either expanding a leaf, or detecting a new cyclic path. Expanding a leaf reduces the unexplored search space. If a new cycle is detected, (Kishimoto and Müller 2004) correctly saves a (dis)proof in the TT, and the (dis)proof is propagated back. This also reduces the unexplored space. When TCA backtracks to n, it makes progress in finding a solution. Therefore, after TCA recomputes $p_n(n)$ and $d_n(n)$, the previously increased thresholds are reused to determine if TCA still needs to re-search n.

Figure 3 presents the pseudo-code of df-pn with TCA. In particular, see lines marked by (*) to clarify the difference between standard df-pn and TCA. Note that $\mathit{inc_flag}$ is a flag to determine if TCA increases th_{pn} and th_{dn}.
DFPNwithTCA(n, thpn, thdn, inc_flag) {
 if (n is a terminal node) { handle n and return; }
 first_time = true;
 while (1) {
 /* determine whether thpn and thdn are increased. */
 if (n is a leaf) inc_flag = false;
 /* if (n has an unproven old child) inc_flag = true; */
 expand and compute pn(n) and dn(n);
 if (first_time && inc_flag) {
 /* increase thresholds */
 thpn = max(thpn, pn(n) + 1);
 thdn = max(thdn, dn(n) + 1);
 }
 if (pn(n) ≥ thpn || dn(n) ≥ thdn)
 break; // termination condition is satisfied
 first_time = false;
 find the best child n1 and second best child n2;
 if (n is an OR node) { /* set new thresholds */
 thpn_child = min(thpn, pn(n2) + 1);
 thdn_child = thdn - dn(n) + dn(n1);
 } else {
 thpn_child = thpn - pn(n) + pn(n1);
 thdn_child = min(thdn, dn(n) + dn(n1));
 }
 DFPNwithTCA(n1, thpn_child, thdn_child, inc_flag);
 }
 save pn(n) and dn(n) in TT.
}

Figure 3: Pseudo code of df-pn with TCA

One might argue that increasing thresholds may result in exploring the larger search space that may not efficiently help prove or disprove the root. However, the threshold control scheme of TCA is based on the observation that most nodes have only normal children. As we will see in the next section, TCA empirically performs better than df-pn(r).

The Source Node Detection Algorithm

Because TCA does not ignore old children, the overestimation problem tends to occur more frequently than in df-pn(r). The Source Node Detection Algorithm (SNDA) overcomes this problem by generalizing Nagai’s method, while avoiding underestimation that appears in his method, and computing (dis)proof numbers more accurately than WPNS.

As in (Nagai 2002), SNDA contains one pointer to one parent in each TT entry. SNDA detects a source node ns in the same way. However, unlike in Nagai’s method, each TT entry contains the fixed number N of moves.

Assume that c1 and c2 are ns’s children created by respectively making moves m1 and m2 at ns. SNDA detects that ns is a source node leading to a destination node nd, if ns and c1 are on the path currently taken by df-pn search, c2 is reached by a recursive procedure of traversing parent pointers starting from nd, and the pointer in c2’s TT entry points to ns. If another move m3 is detected at ns, m3 is additionally saved in ns’s TT entry, as long as less than N moves are retained.

Let n1, . . . , nj be n’s children obtained by making moves in the TT entry of n, and ni+1, . . . , nk be other children of n. SNDA computes pn(n) and dn(n) as follows:

\[
\begin{align*}
\text{dn}(n) &= \max_{i=1,\ldots,k} \text{dn}(n_i) + \sum_{j=i+1}^{k} \text{dn}(n_j) \text{ (OR node)} \\
\text{pn}(n) &= \max_{i=1,\ldots,k} \text{pn}(n_i) + \sum_{j=i+1}^{k} \text{pn}(n_j) \text{ (AND node)}
\end{align*}
\]

In Figure 2, SNDA saves moves A → C and A → F in A’s TT entry when detecting that A is a source node of F. \(\text{dn}(A)\) is now accurately computed because:

\[
\begin{align*}
\text{dn}(A) &= \max(\text{dn}(C), \text{dn}(F)) + \text{dn}(B) \\
&= \max(\text{dn}(D), \text{dn}(F)) + \text{dn}(B) \\
&= \max(\text{dn}(E) + \text{dn}(F), \text{dn}(F)) + \text{dn}(B) \\
&= \text{dn}(E) + \text{dn}(F) + \text{dn}(B)
\end{align*}
\]

Also, \(\text{dn}(G) = \text{dn}(J)\) is derived by SNDA.

Implementation Details

As in (Kishimoto and Müller 2003), TCA updates the minimal distance of node n if n has only unproven old children.

There are several choices when implementing SNDA. We choose the best possible one, based on the results obtained by our preliminary implementations.

In the worst case, the complexity of operations to traverse pointers is equal to the maximum search depth of all previous searches. Moreover, this checking process is performed whenever SNDA detects a destination node nd reached via a parent that is not in nd’s TT entry. This is because many paths to nd exist as well as whether a source node ns exists or not is determined only by comparing a node on the current path of depth-first search with a set of nodes obtained by traversing the pointers in the TT. Since detecting ns incurs intensive computations, we incorporate a strategy in (Nagai 2002). This strategy checks if pn(ns) or dn(ns) is involved in computing pn(ns) or dn(ns). If nd is not involved, the procedure of detecting ns is immediately terminated.

Assume that move m is saved in ns’s TT entry. While m was a cause of overestimating pn(ns) or dn(ns) in previous iterations, it may be unrelated to overestimating pn(ns) or dn(ns) in the next iteration. One choice is to remove m from the TT entry in this case. However, m is preserved once m is saved in the TT entry in our implementation, because removing m returned larger (dis)proof numbers, and degraded the performance. Similarly, the implementation retains the parent pointer once it is saved in the TT entry.

Each TT entry contains at most 10 moves within a total of 64 bit integer, which is possible due to a small average branching factor (about 5) in tsume-shogi. The move indexes obtained by sorting moves are saved in the TT entry to have consistent results for the identical node via different paths. If more than 10 moves exist causing overestimation, 10 best moves are selected by shogi-specific knowledge.
Experimental Results

Setup of Experiments

Many state-of-the-art techniques are integrated with all of our implementations including (Kawano 1996; Seo 1999; Nagai 2002; Kaneko et al. 2005; Kishimoto and Müller 2004; 2005). Overestimation is sometimes easily detected, such as the case where both players keep capturing pieces at a certain square on the board. These are handled by shogi-specific techniques. The remaining overestimation problem is hard to detect by shogi-specific knowledge.

Unlike (Ueda et al. 2008), our WPNS implementation includes an evaluation function $h(n)$ based on the material balance to heuristically initialize proof and disproof numbers at leaf node. Therefore, we slightly change the computation of WPNS to add $(b - 1) \times h(n)$, instead of adding $(b - 1)$ to $\text{pn}(n)$ or $\text{dn}(n)$. This modification improves WPNS by a large margin. Additionally, $h(n)$ is incorporated into all the versions.

78 notoriously difficult tsume-shogi instances composed by tsume-shogi creators are selected from (Kato 2009), including ones that turned out to have no mating sequence or shorter unexpected solutions, because many of them are still non-trivial. The solution lengths range between 300 and 1525 ply. The instances involve complicated DAG and cycles that occur after tsume-shogi solvers search over tens of ply. Moreover, the test suite includes several instances that have not been solved by any other tsume-shogi solver. 2

Our experiments were run on a 2.66GHz Xeon L5410 with 6MB L2 cache with the time limit of 50,000 seconds (about 13.9 hours) per instance with a 2GB transposition table. We prepare several versions to compare performance.

Results

Table 1 summarizes the number of unsolved instances. The table confirms that df-pn with TCA solves more instances than df-pn(r). TCA solves 40 instances more quickly than df-pn(r) of 63 instances solved by both versions.

A typical observed example showing that df-pn(r) fails in solving instances due to underestimation is explained with the help of Figure 4. Assume that B must be proven to prove the root, C has two unproven children D and E, which are typically created by moving kings in two directions, and E is old because of a shorter path via F, which is typically created by moving a promoted bishop or rook. Because df-pn(r) underestimates $\text{pn}(C) = \text{pn}(D)$ by ignoring E, it selects C at A and delays expanding B. In contrast, TCA selects B because $\text{pn}(C) = \text{pn}(D) + \text{pn}(E) > \text{pn}(D)$.

Due to the overestimation problem caused by DAG, df-pn with TCA occasionally suffers from a phenomenon in which

Table 1: The number of problems unsolved by each method

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Num. unsolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>df-pn(r)</td>
<td>14</td>
</tr>
<tr>
<td>df-pn(r) + SNDA</td>
<td>20</td>
</tr>
<tr>
<td>df-pn + TCA</td>
<td>8</td>
</tr>
<tr>
<td>df-pn + TCA + NAGAI</td>
<td>4</td>
</tr>
<tr>
<td>df-pn + TCA + WPNS</td>
<td>1</td>
</tr>
<tr>
<td>df-pn + TCA + SNDA</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4: A typical case of underestimation on df-pn(r)

the (dis)proof number at the root exceeds a large integer value=$200,000,000$, which is defined as ∞ in our implementation to represent proof and disproof numbers within 32 bit integer. Of 8 unsolved instances, TCA is unable to solve 5 instances because of the phenomenon. This demonstrates that it is necessary to handle overestimation.

Interestingly, while including a method to detect overestimation (i.e., NAGAI, WPNS, or SNDA) improves the solving ability of df-pn with TCA, df-pn(r) with SNDA solves much fewer instances than standard df-pn(r). We observed that df-pn(r) with SNDA occasionally suffers from severer underestimation and results in poor performance. For example, df-pn(r) happens to accurately compute $\text{dn}(B) = \text{dn}(E) + \text{dn}(F)$ for unproven B, E, and F in Figure 2, because $\text{dn}(D) = \text{dn}(E)$. With SNDA, df-pn(r) underestimates $\text{dn}(A) = \text{dn}(B) + \text{max}(\text{dn}(C), \text{dn}(F)) = \text{dn}(B) + \text{max}(\text{dn}(E), \text{dn}(F))$, because SNDA detects the existence of source node A from destination F.

In Table 1, it is not surprising to confirm that SNDA is better than NAGAI to be integrated with df-pn + TCA, because SNDA extends NAGAI. However, WPNS with df-pn + TCA solves the same set of instances solved by SNDA. In most cases, WPNS achieves comparable performance to SNDA. Of 77 problems solved by both, SNDA solves 38 problems more quickly, while WPNS solves 39 problems more quickly. On average, the node expansion rate with WPNS is about 37% larger than that with SNDA.

Table 2: Execution time (seconds) on the hardest problems for df-pn + TCA + WPNS to solve

<table>
<thead>
<tr>
<th>Instance</th>
<th>TCA + WPNS</th>
<th>TCA + SNDA</th>
<th>Solution Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-Shinsekai</td>
<td>45.356</td>
<td>7.298</td>
<td>941</td>
</tr>
<tr>
<td>Sekitoba</td>
<td>18.545</td>
<td>7.241</td>
<td>525</td>
</tr>
<tr>
<td>Megalopolis</td>
<td>48.907</td>
<td>13.590</td>
<td>515</td>
</tr>
</tbody>
</table>

However, when instances become extremely hard to
Solving Meta-Shinsekai and Megalopolis builds a DAG as in the right example in Figure 2 with many layers. They are typically created by a few moves on defender’s promoted pawns and king.

Conclusions and Future Work

This paper presents practical solutions to handle infinite loops, underestimation, and overestimation occurring in depth-first proof-number search. Promising results are obtained in solving notoriously difficult tsume-shogi problems.

One obvious research direction is to apply TCA and SNDA to other domains. Tsume-Go is an ideal domain, because the best solver is based on df-pn(r) (Kishimoto and Müller 2005). Also, because our TCA also improves WPNS, which has an advantage of the faster node expansion rate than SNDA, a hybrid approach of SNDA and WPNS is another research possibility. Finally, as an open question, (Kishimoto and Müller 2008) describes that df-pn(r) is a strong candidate for guaranteeing the completeness on solving any finite DCG. Our remedy for infinite loops is also a candidate to investigate theoretical completeness properties.

Acknowledgments

Financial support was provided by the JST PRESTO program. We would like to thank Tomoyuki Kaneko and Martin Müller for their beneficial comments.

References

