photo
鈴木大慈        TITECHLOGO   PRESTO
Associate Professor

Department of Mathematical and Computing Sciences
Graduate School of Information Science and Engineering
Tokyo Institute of Technology

Sakigake (PRESTO), JST

Room: W-707, West Building 8 (map)
Postal Address: W8-46, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8552, JAPAN
Phone: +81-3-5734-3219
E-mail: e-mail

Topic

Research Interests

I am interested in Statistics and Machine Learning, especially the following research topics.
  • Statistical learning theory
    • Sparse estimation in high dimensional data
    • Nonparametric convergence analysis
  • Convex optimization
    • Online-Stochastic optimization
    • Discrete convex analysis
  • Information geometry
    • Prior selection
    • Objective Bayes
  • Control theory
    • Hybrid systems

CV

Publications and Presentations

New:
  • Heishiro Kanagawa, Taiji Suzuki, Hayato Kobayashi, Nobuyuki Shimizu, and Yukihiro Tagami: Gaussian process nonparametric tensor estimator and its minimax optimality. International Conference on Machine Learning (ICML2016), 2016. Accepted.
  • Song Liu, Taiji Suzuki, Masashi Sugiyama, and Kenji Fukumizu: Structure Learning of Partitioned Markov Networks. International Conference on Machine Learning (ICML2016), 2016. Accepted.
  • Yuichi Mori and Taiji Suzuki: Generalized ridge estimator and model selection criterion in multivariate linear regression. arXiv:1603.09458.
  • Tomoya Murata and Taiji Suzuki: Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems. arXiv:1603.02412.
  • Ryota Tomioka and Taiji Suzuki: Spectral norm of random tensors. arXiv:1407.1870.
Journal (Refereed):
  • Song Liu, Taiji Suzuki, Relator Raissa, Jun Sese, Masashi Sugiyama, and Kenji Fukumizu: Support Consistency of Direct Sparse-Change Learning in Markov Networks. The Annals of Statistics, 2016 (accepted).
  • Yoshito Hirata, Kai Morino, Taiji Suzuki, Qian Guo, Hiroshi Fukuhara, and Kazuyuki Aihara: System Identification and Parameter Estimation in Mathematical Medicine: Examples Demonstrated for Prostate Cancer. Quantitative Biology, 2016, 4(1): 13--19. DOI: 10.1007/s40484-016-0059-0.
  • Taiji Suzuki: Stochastic Alternating Direction Method of Multipliers for Structured Regularization. Journal of Japan Society of Computational Statistics, 28(2015), 105--124
  • Taiji Suzuki, and Kazuyuki Aihara: Nonlinear System Identification for Prostate Cancer and Optimality of Intermittent Androgen Suppression Therapy. Mathematical Biosciences, vol. 245, issue 1, pp. 40--48, 2013.
  • Taiji Suzuki, and Masashi Sugiyama: Fast learning rate of multiple kernel learning: trade-off between sparsity and smoothness. The Annals of Statistics, vol. 41, number 3, pp. 1381-1405, 2013. (arXiv version, arXiv:1203.0565)
  • Taiji Suzuki: Improvement of Multiple Kernel Learning using Adaptively Weighted Regularization. JSIAM Letters, vol. 5, pp. 49--52, 2013.
  • Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, M. C. du Plessis, Song Liu, Ichiro Takeuchi: Density Difference Estimation. Neural Computation, 25(10): 2734--2775, 2013.
  • Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Masashi Sugiyama, Relative Density-Ratio Estimation for Robust Distribution Comparison. Neural Computation, vol. 25, number 5, pp. 1324--1370, 2013.
  • Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama: Computational complexity of kernel-based density-ratio estimation: A condition number analysis. Machine Learning, vol. 90, pp. 431-460, 2013.
  • Taiji Suzuki, and Masashi Sugiyama: Sufficient dimension reduction via squared-loss mutual information estimation. Neural Computation, vol. 25, pp. 725-758, 2013. (software (matlab))
  • Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama: Statistical analysis of kernel-based least-squares density-ratio estimation. Machine Learning, vol. 86, Issue 3, pp. 335-367, 2012.
  • Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama: f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models. IEEE Transactions on Information Theory, Vol. 58, Issue 2, pp. 708-720, 2012.
  • Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori: Density ratio matching under the Bregman divergence: A unified framework of density ratio estimation. Annals of the Institute of Statistical Mathematics, vol. 11, pp. 1--36, 2011.
  • Taiji Suzuki and Ryota Tomioka: SpicyMKL: A Fast Algorithm for Multiple Kernel Learning with Thousands of Kernels. Machine Learning, vol. 85, issue 1, pp. 77--108, 2011. (arXiv:0909.5026, METR, slide (pptm, pdf) in one-day workshop at ISM, software)
  • Masashi Sugiyama, Taiji Suzuki, Yuta Itoh, Takafumi Kanamori, and Manabu Kimura: Least-Squares Two-Sample Test. Neural Networks, vol.24, no.7, pp.735--751, 2011.
  • Ryota Tomioka, Taiji Suzuki, and Masashi Sugiyama: Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparse Learning. Journal of Machine Learning Research, 12(May):1537--1586, 2011. (arXiv:0911.4046)
  • Masashi Sugiyama, Makoto Yamada, Paul von Bunau, Taiji Suzuki, Takafumi Kanamori, and Motoaki Kawanabe: Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. Neural Networks, vol.24, no.2, pp.183-198, 2011.
  • Taiji Suzuki, Nicholas Bruchovsky, and Kazuyuki Aihara: Piecewise Affine Systems Modelling for Optimizing Hormonal Therapy of Prostate Cancer. Philosophical Transactions A of the Royal Society, 368 (2010), 5045--5059.
  • Taiji Suzuki, and Masashi Sugiyama: Least-squares Independent Component Analysis. Neural Computation, 23(1) (2011), 284--301. (software)
  • Masashi Sugiyama, and Taiji Suzuki: Least-squares independence test. IEICE Transactions on Information and Systems, vol.E94-D, no.6, pp.1333-1336, 2011.
  • Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama: Theoretical analysis of density ratio estimation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.E93-A, no.4, pp.787--798, 2010.
  • Masashi Sugiyama, Ichiro Takeuchi, Takafumi Kanamori, Taiji Suzuki, Hirotaka Hachiya, and Daisuke Okanohara: Least-squares conditional density estimation. IEICE Transactions on Information and Systems, vol.E93-D, no.3, pp.583-594, 2010.
  • Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Shohei Hido, Jun Sese, Ichiro Takeuchi, and Liwei Wang: A density-ratio framework for statistical data processing. IPSJ Transactions on Computer Vision and Applications, 1 (2009), 183--208.
  • Taiji Suzuki, Masashi Sugiyama, Takafumi Kanamori, and Jun Sese: Mutual information estimation reveals global associations between stimuli and biological processes. BMC Bioinformatics, 10(Suppl 1):S52, 2009.
  • Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von Bunau, and Motoaki Kawanabe: Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics. 60(4) (2008), 699--746.
  • Taiji Suzuki, and Fumiyasu Komaki: On prior selection and covariate shift of $\beta$-Bayesian prediction under $\alpha$-divergence risk. Communications in Statistics --- Theory and Methods, 39(8) (2010), 1655--1673.
  • Akimichi Takemura, and Taiji Suzuki: Game-Theoretic Derivation of Discrete Distributions and Discrete Pricing Formulas. Journal of Japan Statistical Society, 37 (1) (2006), 87--104.
  • Taiji Suzuki, Satoshi Aoki, and Kazuo Murota: Use of primal-dual technique in the network algorithm for two-waycontingency tables. Japan Journal of Industrial and Applied Mathematics, 22 (1) (2005), 133--145. (Errata)
International Conference (Refereed):
  • Heishiro Kanagawa, Taiji Suzuki, Hayato Kobayashi, Nobuyuki Shimizu, and Yukihiro Tagami: Gaussian process nonparametric tensor estimator and its minimax optimality. International Conference on Machine Learning (ICML2016), 2016. Accepted.
  • Song Liu, Taiji Suzuki, Masashi Sugiyama, and Kenji Fukumizu: Structure Learning of Partitioned Markov Networks. International Conference on Machine Learning (ICML2016), 2016. Accepted.
  • Taiji Suzuki and Heishiro Kanagawa: Bayes method for low rank tensor estimation. International Meeting on “High-Dimensional Data Driven Science” (HD3-2015). Dec. 14th-17th/2015, Kyoto Japan. Oral presentation. Journal of Physics: Conference Series, 699(1), pp. 012020, 2016.
  • Taiji Suzuki: Convergence rate of Bayesian tensor estimator and its minimax optimality. The 32nd International Conference on Machine Learning (ICML2015), JMLR Workshop and Conference Proceedings 37:pp. 1273--1282, 2015.
  • Satoshi Hara, Tetsuro Morimura, Toshihiro Takahashi, Hiroki Yanagisawa, Taiji Suzuki: A Consistent Method for Graph Based Anomaly Localization. The 18th International Conference on Artificial Intelligence and Statistics (AISTATS2015), JMLR Workshop and Conference Proceedings 38:333--341, 2015.
  • Song Liu, Taiji Suzuki, and Masashi Sugiyama: Support Consistency of Direct Sparse-Change Learning in Markov Networks. The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI2015), 2015. (arXiv:1407.0581).
  • Taiji Suzuki: Stochastic Dual Coordinate Ascent with Alternating Direction Method of Multipliers. International Conference on Machine Learning (ICML2014), JMLR Workshop and Conference Proceedings 32(1):736--744, 2014. supplementary. (arXiv version: arXiv:1311.0622) This paper was also presented in OPT2013, NIPS workshop "Optimization for Machine Learning". Source code (Matlab).
  • Ryota Tomioka, and Taiji Suzuki: Convex Tensor Decomposition via Structured Schatten Norm Regularization. Advances in Neural Information Processing Systems (NIPS2013), 1331--1339, 2013.
  • Taiji Suzuki: Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method. International Conference on Machine Learning (ICML2013), 2013, JMLR Workshop and Conference Proceedings 28(1): 392--400, 2013. Source code (Matlab).
  • Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Marthinus du Plessis, Song Liu, and Ichiro Takeuchi: Density-Difference Estimation . Advances in Neural Information Processing Systems (NIPS2012), 692--700, 2012.
  • Taiji Suzuki: PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additive Model. Conference on Learning Theory (COLT2012), 2012, JMLR Workshop and Conference Proceedings 23: 8.1--8.20, 2012. (slide)
  • Takafumi Kanamori, Akiko Takeda and Taiji Suzuki: A Conjugate Property between Loss Functions and Uncertainty Sets in Classification Problems. Conference on Learning Theory (COLT2012), 2012, JMLR Workshop and Conference Proceedings 23: 29.1--29.23, 2012.
  • Taiji Suzuki and Masashi Sugiyama: Fast Learning Rate of Multiple Kernel Learning: Trade-off between Sparsity and Smoothness. Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS2012), (selected as oral presentation). JMLR Workshop and Conference Proceedings 22: 1152--1183, 2012. (long version, arXiv:1203.0565)
  • Taiji Suzuki: Unifying Framework for Fast Learning Rate of Non-Sparse Multiple Kernel Learning. Advances in Neural Information Processing Systems 24 (NIPS2011). pp.1575--1583. (long version, arXiv:1111.3781)
  • Ryota Tomioka, Taiji Suzuki, Kohei Hayashi and Hisashi Kashima: Statistical Performance of Convex Tensor Decomposition. Advances in Neural Information Processing Systems 24 (NIPS2011). pp.972--980.
  • Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya and Masashi Sugiyama: Relative Density-Ratio Estimation for Robust Distribution Comparison. Advances in Neural Information Processing Systems 24 (NIPS2011). pp.594--602. (long version, arXiv:1106.4729)
  • Ryota Tomioka and Taiji Suzuki: Regularization Strategies and Empirical Bayesian Learning for MKL. NIPS2010 Workshop: New Directions in Multiple Kernel Learning, 2010. (arXiv:1011.3090)
  • Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama and Hisashi Kashima: A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices. 27th International Conference on Machine Learning International (ICML2010). pp.1087--1094. (pdf)
  • Taiji Suzuki and Masashi Sugiyama: Sufficient dimension reduction via squared-loss mutual information estimation. Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS2010). JMLR Workshop and Conference Proceedings 9: pp.781--788, 2010. (pdf)
  • Masashi Sugiyama, Ichiro Takeuchi, Takafumi Kanamori, Taiji Suzuki, Hirotaka Hachiya, and Daisuke Okanohara: Conditional density estimation via least-squares density ratio estimation. Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS2010). JMLR Workshop and Conference Proceedings 9: pp.804--811, 2010. (pdf)
  • Masashi Sugiyama, Satoshi Hara, Paul von Bunau, Taiji Suzuki, Takafumi Kanamori, and Motoaki Kawanabe: Direct density ratio estimation with dimensionality reduction. 2010 SIAM International Conference on Data Mining (SDM2010). pp.595--606. (pdf)
  • Ryota Tomioka and Taiji Suzuki: Sparsity-accuracy trade-off in MKL. NIPS 2009 Workshop :: Understanding Multiple Kernel Learning Methods, Whistler, Canada. (T. Suzuki presented) (arXiv:1001.2615)
  • Ryota Tomioka, Taiji Suzuki, and Masashi Sugiyama: Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparse Learning. NIPS 2009 Workshop :: Optimization for Machine Learning, Whistler, Canada. (arXiv:0911.4046)
  • Taiji Suzuki, Masashi Sugiyama, and Toshiyuki Tanaka: Mutual information approximation via maximum likelihood estimation of density ratio. 2009 IEEE International Symposium on Information Theory (ISIT2009). pp.463--467, Seoul, Korea, 2009.
  • Taiji Suzuki, and Masashi Sugiyama: Estimating Squared-loss Mutual Information for Independent Component Analysis. ICA 2009. Paraty, Brazil, 2009. Lecture Notes in Computer Science, Vol. 5441, pp.130--137, Berlin, Springer, 2009.
  • Taiji Suzuki, Masashi Sugiyama, Takafumi Kanamori and Jun Sese: Mutual information estimation reveals global associations between stimuli and biological processes. In Proceedings of the seventh asia pacific bioinformatics conference (APBC 2009). Beijing, China, 2009.
  • Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi Kanamori: Approximating mutual information by maximum likelihood density ratio estimation. In Proceedings of the 3rd workshop on new challenges for feature selection in data mining and knowledge discovery (FSDM2008), JMLR workshop and conference proceedings, Vol. 4, pp.5--20, 2008.
  • Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi Kanamori: A least-squares approach to mutual information estimation with application in variable selection. In Proceedings of the 3rd workshop on new challenges for feature selection in data mining and knowledge discovery (FSDM2008). Antwerp, Belgium, 2008.
  • Taiji Suzuki, Takamasa Koshizen, Kazuyuki Aihara and Hiroshi Tsujino: Learning to estimate user interest utilizing the variational Bayes estimator. Intelligent Systems Design and Applications (ISDA) 2005, 94--99. Wroclaw, Poland, September 2005.
  • Tetsuya Hoya, Gen Hori, Havagim Bakardjian, Tomoaki Nishimura, Taiji Suzuki, Yoichi Miyawaki, Arao Funase, and Jianting Cao: Classification of Single Trial EEG Signals by a Combined Principal + Independent Component Analysis and Probabilistic Neural Network Approach. Proc. ICA2003, pp. 197-202. Nara, Japan, January 2003.
Book:
  • Masashi Sugiyama, Taiji Suzuki, & Takafumi Kanamori: Density Ratio Estimation in Machine Learning. Cambridge University Press, 2012.
Invited Talk:
  • Taiji Suzuki: Stochastic Optimization. Machine Learning Summer School 2015 Kyoto, 2015. Kyoto, Japan. 23/Aug-4/Sep,2015 (presented in 2-4/Sep/2015).
  • Taiji Suzuki: Stochastic Dual Coordinate Ascent with ADMM. SIAM Conference on Optimization (SIAM-OPT2014), 2014. San Diego, USA. 19-22/May,2014 (presented in 20/May/2014).
  • Taiji Suzuki: Some convergence results on multiple kernel additive models. Nonparametric and High-dimensional Statistics. CIRM, Luminy (17/December/2012--21/December/2012), presented in 18/December/2012.
  • Taiji Suzuki: Fast learning rate of non-sparse multiple kernel learning and optimal regularization strategies. The 2nd Institute of Mathematical Statistics Asia Pacific Rim Meeting (2/July/2012--4/July/2012), Tsukuba, Japan. 4th July, 2012.
Technical Report:
  • Taiji Suzuki, Ryota Tomioka, Masashi Sugiyama: Fast Convergence Rate of Multiple Kernel Learning with Elastic-net Regularization. arXiv:1103.0431. (slide in Japanese)
  • Taiji Suzuki, Ryota Tomioka, and Masashi Sugiyama: Sharp Convergence Rate and Support Consistency of Multiple Kernel Learning with Sparse and Dense Regularization. arXiv:1103.5201.
  • Taiji Suzuki: Fast Learning Rate of lp-MKL and its Minimax Optimality. arXiv:1103.5202.
  • Taiji Suzuki, and Ryota Tomioka: SpicyMKL. arXiv:0909.5026, METR. (slide (pptm, pdf) in one-day workshop at ISM, software)
  • Taiji Suzuki, Satoshi Aoki and Kazuo Murota: Use of primal-dual technique in the network algorithm for two-waycontingency tables. METR 2004-28, Department of Mathematical Informatics, University of Tokyo, May 2004. (pdf) (Errata)
  • Akimichi Takemura and Taiji Suzuki: Game Theoretic Derivation of Discrete Distributions and Discrete Pricing Formulas. METR2005-25, Department of Mathematical Informatics, University of Tokyo, September 2005. (pdf)
Article in Book:
  • Ryota Tomioka, Taiji Suzuki, & Masashi Sugiyama: Augmented Lagrangian methods for learning, selecting, and combining features. In S. Sra, S. Nowozin, and S. J. Wright (Eds.), Optimization for Machine Learning, MIT Press, Cambridge, MA, USA, 2011.
  • Masashi Sugiyama, Taiji Suzuki, & Takafumi Kanamori: Density ratio estimation: A comprehensive review. In Statistical Experiment and Its Related Topics, Research Institute for Mathematical Sciences Kokyuroku, no.1703, pp.10-31, 2010. (Presented at Research Institute for Mathematical Sciences Workshop on Statistical Experiment and Its Related Topics, Kyoto, Japan, Mar. 8-10, 2010)
  • Ryota Tomioka, Taiji Suzuki, & Masashi Sugiyama: Optimization algorithms for sparse regularization and multiple kernel learning and their applications to image recognition. Image Lab, vol.21, no.4, pp.5-11, 2010.
Symposium:
Award:
  • Taiji Suzuki: IBISML (Information-Based Induction Sciences and Machine Learning), Best paper award 2012 (2012年度IBISML研究会賞). Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method.
  • Taiji Suzuki: 情報理工学系研究科長賞 東京大学大学院情報理工学系研究科,2009年.
  • Taiji Suzuki: 情報理工学系研究科長賞 東京大学大学院情報理工学系研究科,2006年.
  • MIRU優秀論文賞, Meeting on Image Recognition and Understanding 2008 (MIRU2008), 2008年 "Direct Importance Estimation - A New Versatile Tool for Statistical Pattern Recognition" Masashi Sugiyama (Tokyo Institute of Technology), Takafumi Kanamori (Nagoya University), Taiji Suzuki (University of Tokyo), Shohei Hido (IBM Research), Jun Sese (Ochanomizu University), Ichiro Takeuchi (Mie University), and Liwei Wang (Peking University).
Domestic Conference and Meeting:
    list (in Japanese).

Miscellaneous materials